Merge pull request #2146 from mozilla/refactor-model-impls

Refactor TF and TFLite implementations into their own classes/files and fix concurrent/interleaved stream bugs by tracking LSTM state in StreamingState
This commit is contained in:
Reuben Morais 2019-06-20 17:03:33 -03:00 committed by GitHub
commit a2306cf822
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 1017 additions and 708 deletions

View File

@ -574,12 +574,8 @@ def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
# no state management since n_step is expected to be dynamic too (see below)
previous_state = previous_state_c = previous_state_h = None
else:
if tflite:
previous_state_c = tf.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_c')
previous_state_h = tf.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_h')
else:
previous_state_c = variable_on_cpu('previous_state_c', [batch_size, Config.n_cell_dim], initializer=None)
previous_state_h = variable_on_cpu('previous_state_h', [batch_size, Config.n_cell_dim], initializer=None)
previous_state_c = tf.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_c')
previous_state_h = tf.placeholder(tf.float32, [batch_size, Config.n_cell_dim], name='previous_state_h')
previous_state = tf.contrib.rnn.LSTMStateTuple(previous_state_c, previous_state_h)
@ -592,7 +588,7 @@ def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
rnn_impl = rnn_impl_lstmblockfusedcell
logits, layers = create_model(batch_x=input_tensor,
seq_length=seq_length if FLAGS.use_seq_length else None,
seq_length=seq_length if not FLAGS.export_tflite else None,
dropout=no_dropout,
previous_state=previous_state,
overlap=False,
@ -605,7 +601,7 @@ def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
logits = tf.squeeze(logits, [1])
# Apply softmax for CTC decoder
logits = tf.nn.softmax(logits)
logits = tf.nn.softmax(logits, name='logits')
if batch_size <= 0:
if tflite:
@ -618,51 +614,31 @@ def create_inference_graph(batch_size=1, n_steps=16, tflite=False):
'input_lengths': seq_length,
},
{
'outputs': tf.identity(logits, name='logits'),
'outputs': logits,
},
layers
)
new_state_c, new_state_h = layers['rnn_output_state']
if tflite:
logits = tf.identity(logits, name='logits')
new_state_c = tf.identity(new_state_c, name='new_state_c')
new_state_h = tf.identity(new_state_h, name='new_state_h')
new_state_c = tf.identity(new_state_c, name='new_state_c')
new_state_h = tf.identity(new_state_h, name='new_state_h')
inputs = {
'input': input_tensor,
'previous_state_c': previous_state_c,
'previous_state_h': previous_state_h,
'input_samples': input_samples,
}
inputs = {
'input': input_tensor,
'previous_state_c': previous_state_c,
'previous_state_h': previous_state_h,
'input_samples': input_samples,
}
if FLAGS.use_seq_length:
inputs.update({'input_lengths': seq_length})
if not FLAGS.export_tflite:
inputs.update({'input_lengths': seq_length})
outputs = {
'outputs': logits,
'new_state_c': new_state_c,
'new_state_h': new_state_h,
'mfccs': mfccs,
}
else:
zero_state = tf.zeros([batch_size, Config.n_cell_dim], tf.float32)
initialize_c = tf.assign(previous_state_c, zero_state)
initialize_h = tf.assign(previous_state_h, zero_state)
initialize_state = tf.group(initialize_c, initialize_h, name='initialize_state')
with tf.control_dependencies([tf.assign(previous_state_c, new_state_c), tf.assign(previous_state_h, new_state_h)]):
logits = tf.identity(logits, name='logits')
inputs = {
'input': input_tensor,
'input_lengths': seq_length,
'input_samples': input_samples,
}
outputs = {
'outputs': logits,
'initialize_state': initialize_state,
'mfccs': mfccs,
}
outputs = {
'outputs': logits,
'new_state_c': new_state_c,
'new_state_h': new_state_h,
'mfccs': mfccs,
}
return inputs, outputs, layers
@ -682,10 +658,12 @@ def export():
output_names_ops = [op.name for op in outputs.values() if isinstance(op, Operation)]
output_names = ",".join(output_names_tensors + output_names_ops)
if not FLAGS.export_tflite:
mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
else:
mapping = None
if FLAGS.export_tflite:
# Create a saver using variables from the above newly created graph
# Training graph uses LSTMFusedCell, but the TFLite inference graph uses
# a static RNN with a normal cell, so we need to rewrite the names to
# match the training weights when restoring.
def fixup(name):
if name.startswith('rnn/lstm_cell/'):
return name.replace('rnn/lstm_cell/', 'lstm_fused_cell/')
@ -710,7 +688,7 @@ def export():
if not os.path.isdir(FLAGS.export_dir):
os.makedirs(FLAGS.export_dir)
def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=None):
def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=''):
frozen = freeze_graph.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=saver.as_saver_def(),
@ -731,7 +709,7 @@ def export():
placeholder_type_enum=tf.float32.as_datatype_enum)
if not FLAGS.export_tflite:
frozen_graph = do_graph_freeze(output_node_names=output_names, variables_blacklist='previous_state_c,previous_state_h')
frozen_graph = do_graph_freeze(output_node_names=output_names)
frozen_graph.version = int(file_relative_read('GRAPH_VERSION').strip())
# Add a no-op node to the graph with metadata information to be loaded by the native client
@ -747,7 +725,7 @@ def export():
with open(output_graph_path, 'wb') as fout:
fout.write(frozen_graph.SerializeToString())
else:
frozen_graph = do_graph_freeze(output_node_names=output_names, variables_blacklist='')
frozen_graph = do_graph_freeze(output_node_names=output_names)
output_tflite_path = os.path.join(FLAGS.export_dir, output_filename.replace('.pb', '.tflite'))
converter = tf.lite.TFLiteConverter(frozen_graph, input_tensors=inputs.values(), output_tensors=outputs.values())
@ -771,8 +749,7 @@ def do_single_file_inference(input_file_path):
inputs, outputs, _ = create_inference_graph(batch_size=1, n_steps=-1)
# Create a saver using variables from the above newly created graph
mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
saver = tf.train.Saver(mapping)
saver = tf.train.Saver()
# Restore variables from training checkpoint
# TODO: This restores the most recent checkpoint, but if we use validation to counteract
@ -784,9 +761,10 @@ def do_single_file_inference(input_file_path):
checkpoint_path = checkpoint.model_checkpoint_path
saver.restore(session, checkpoint_path)
session.run(outputs['initialize_state'])
features, features_len = audiofile_to_features(input_file_path)
previous_state_c = np.zeros([1, Config.n_cell_dim])
previous_state_h = np.zeros([1, Config.n_cell_dim])
# Add batch dimension
features = tf.expand_dims(features, 0)
@ -799,6 +777,8 @@ def do_single_file_inference(input_file_path):
logits = outputs['outputs'].eval(feed_dict={
inputs['input']: features,
inputs['input_lengths']: features_len,
inputs['previous_state_c']: previous_state_c,
inputs['previous_state_h']: previous_state_h,
}, session=session)
logits = np.squeeze(logits)

View File

@ -1 +1 @@
1
2

View File

@ -343,7 +343,7 @@ Refer to the corresponding [README.md](native_client/README.md) for information
### Exporting a model for TFLite
If you want to experiment with the TF Lite engine, you need to export a model that is compatible with it, then use the `--nouse_seq_length --export_tflite` flags. If you already have a trained model, you can re-export it for TFLite by running `DeepSpeech.py` again and specifying the same `checkpoint_dir` that you used for training, as well as passing `--nouse_seq_length --export_tflite --export_dir /model/export/destination`.
If you want to experiment with the TF Lite engine, you need to export a model that is compatible with it, then use the `--export_tflite` flags. If you already have a trained model, you can re-export it for TFLite by running `DeepSpeech.py` again and specifying the same `checkpoint_dir` that you used for training, as well as passing `--export_tflite --export_dir /model/export/destination`.
### Making a mmap-able model for inference

View File

@ -20,4 +20,4 @@ python -u DeepSpeech.py --noshow_progressbar \
--export_dir '/tmp/train_tflite' \
--lm_binary_path 'data/smoke_test/vocab.pruned.lm' \
--lm_trie_path 'data/smoke_test/vocab.trie' \
--export_tflite --nouse_seq_length
--export_tflite

Binary file not shown.

View File

@ -70,9 +70,20 @@ tf_cc_shared_object(
srcs = ["deepspeech.cc",
"deepspeech.h",
"alphabet.h",
"modelstate.h",
"modelstate.cc",
"ds_version.h",
"ds_graph_version.h"] +
DECODER_SOURCES,
DECODER_SOURCES +
select({
"//native_client:tflite": [
"tflitemodelstate.h",
"tflitemodelstate.cc"
],
"//conditions:default": [
"tfmodelstate.h",
"tfmodelstate.cc"
]}),
copts = select({
# -fvisibility=hidden is not required on Windows, MSCV hides all declarations by default
"//tensorflow:windows": ["/w"],
@ -103,34 +114,26 @@ tf_cc_shared_object(
### => Trying to be more fine-grained
### Use bin/ops_in_graph.py to list all the ops used by a frozen graph.
### CPU only build, libdeepspeech.so file size reduced by ~50%
"//tensorflow/core/kernels:dense_update_ops", # Assign
"//tensorflow/core/kernels:constant_op", # Const
"//tensorflow/core/kernels:immutable_constant_op", # ImmutableConst
"//tensorflow/core/kernels:dense_update_ops", # Assign (remove once prod model no longer depends on it)
"//tensorflow/core/kernels:constant_op", # Placeholder
"//tensorflow/core/kernels:immutable_constant_op", # ImmutableConst (used in memmapped models)
"//tensorflow/core/kernels:identity_op", # Identity
"//tensorflow/core/kernels:softmax_op", # Softmax
"//tensorflow/core/kernels:transpose_op", # Transpose
"//tensorflow/core/kernels:reshape_op", # Reshape
"//tensorflow/core/kernels:shape_ops", # Shape
"//tensorflow/core/kernels:concat_op", # ConcatV2
"//tensorflow/core/kernels:split_op", # Split
"//tensorflow/core/kernels:variable_ops", # VariableV2
"//tensorflow/core/kernels:relu_op", # Relu
"//tensorflow/core/kernels:bias_op", # BiasAdd
"//tensorflow/core/kernels:math", # Range, MatMul
"//tensorflow/core/kernels:control_flow_ops", # Enter
"//tensorflow/core/kernels:tile_ops", # Tile
"//tensorflow/core/kernels:gather_op", # Gather
"//tensorflow/core/kernels:mfcc_op", # Mfcc
"//tensorflow/core/kernels:spectrogram_op", # AudioSpectrogram
"//tensorflow/core/kernels:strided_slice_op", # StridedSlice
"//tensorflow/core/kernels:slice_op", # Slice, needed by StridedSlice
"//tensorflow/contrib/rnn:lstm_ops_kernels", # BlockLSTM
"//tensorflow/core/kernels:random_ops", # RandomGammaGrad
"//tensorflow/core/kernels:pack_op", # Pack
"//tensorflow/core/kernels:gather_nd_op", # GatherNd
#### Needed by production model produced without "--use_seq_length False"
#"//tensorflow/core/kernels:logging_ops", # Assert
#"//tensorflow/core/kernels:reverse_sequence_op", # ReverseSequence
],
}) + if_cuda([
"//tensorflow/core:core",

View File

@ -11,17 +11,14 @@
#include "deepspeech.h"
#include "alphabet.h"
#include "modelstate.h"
#include "native_client/ds_version.h"
#include "native_client/ds_graph_version.h"
#ifndef USE_TFLITE
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/util/memmapped_file_system.h"
#else // USE_TFLITE
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/kernels/register.h"
#include "tfmodelstate.h"
#else
#include "tflitemodelstate.h"
#endif // USE_TFLITE
#include "ctcdecode/ctc_beam_search_decoder.h"
@ -36,23 +33,9 @@
#define LOGE(...)
#endif // __ANDROID__
//TODO: infer batch size from model/use dynamic batch size
constexpr unsigned int BATCH_SIZE = 1;
constexpr unsigned int DEFAULT_SAMPLE_RATE = 16000;
constexpr unsigned int DEFAULT_WINDOW_LENGTH = DEFAULT_SAMPLE_RATE * 0.032;
constexpr unsigned int DEFAULT_WINDOW_STEP = DEFAULT_SAMPLE_RATE * 0.02;
#ifndef USE_TFLITE
using namespace tensorflow;
#else
using namespace tflite;
#endif
using std::vector;
/* This is the actual implementation of the streaming inference API, with the
Model class just forwarding the calls to this class.
/* This is the implementation of the streaming inference API.
The streaming process uses three buffers that are fed eagerly as audio data
is fed in. The buffers only hold the minimum amount of data needed to do a
@ -75,17 +58,23 @@ using std::vector;
API. When audio_buffer is full, features are computed from it and pushed to
mfcc_buffer. When mfcc_buffer is full, the timestep is copied to batch_buffer.
When batch_buffer is full, we do a single step through the acoustic model
and accumulate results in the DecoderState structure.
and accumulate the intermediate decoding state in the DecoderState structure.
When finishStream() is called, we decode the accumulated logits and return
the corresponding transcription.
When finishStream() is called, we return the corresponding transcription from
the current decoder state.
*/
struct StreamingState {
vector<float> audio_buffer;
vector<float> mfcc_buffer;
vector<float> batch_buffer;
ModelState* model;
std::unique_ptr<DecoderState> decoder_state;
vector<float> audio_buffer_;
vector<float> mfcc_buffer_;
vector<float> batch_buffer_;
vector<float> previous_state_c_;
vector<float> previous_state_h_;
ModelState* model_;
std::unique_ptr<DecoderState> decoder_state_;
StreamingState();
~StreamingState();
void feedAudioContent(const short* buffer, unsigned int buffer_size);
char* intermediateDecode();
@ -100,133 +89,12 @@ struct StreamingState {
void processBatch(const vector<float>& buf, unsigned int n_steps);
};
struct ModelState {
#ifndef USE_TFLITE
MemmappedEnv* mmap_env;
Session* session;
GraphDef graph_def;
#else // USE_TFLITE
std::unique_ptr<Interpreter> interpreter;
std::unique_ptr<FlatBufferModel> fbmodel;
#endif // USE_TFLITE
unsigned int ncep;
unsigned int ncontext;
Alphabet* alphabet;
Scorer* scorer;
unsigned int beam_width;
unsigned int n_steps;
unsigned int n_context;
unsigned int n_features;
unsigned int mfcc_feats_per_timestep;
unsigned int sample_rate;
unsigned int audio_win_len;
unsigned int audio_win_step;
#ifdef USE_TFLITE
size_t previous_state_size;
std::unique_ptr<float[]> previous_state_c_;
std::unique_ptr<float[]> previous_state_h_;
int input_node_idx;
int previous_state_c_idx;
int previous_state_h_idx;
int input_samples_idx;
int logits_idx;
int new_state_c_idx;
int new_state_h_idx;
int mfccs_idx;
std::vector<int> acoustic_exec_plan;
std::vector<int> mfcc_exec_plan;
#endif
ModelState();
~ModelState();
/**
* @brief Perform decoding of the logits, using basic CTC decoder or
* CTC decoder with KenLM enabled
*
* @return String representing the decoded text.
*/
char* decode(DecoderState* state);
/**
* @brief Perform decoding of the logits, using basic CTC decoder or
* CTC decoder with KenLM enabled
*
* @return Vector of Output structs directly from the CTC decoder for additional processing.
*/
vector<Output> decode_raw(DecoderState* state);
/**
* @brief Return character-level metadata including letter timings.
*
*
* @return Metadata struct containing MetadataItem structs for each character.
* The user is responsible for freeing Metadata by calling DS_FreeMetadata().
*/
Metadata* decode_metadata(DecoderState* state);
/**
* @brief Do a single inference step in the acoustic model, with:
* input=mfcc
* input_lengths=[n_frames]
*
* @param mfcc batch input data
* @param n_frames number of timesteps in the data
*
* @param[out] output_logits Where to store computed logits.
*/
void infer(const float* mfcc, unsigned int n_frames, vector<float>& logits_output);
void compute_mfcc(const vector<float>& audio_buffer, vector<float>& mfcc_output);
};
ModelState::ModelState()
:
#ifndef USE_TFLITE
mmap_env(nullptr)
, session(nullptr)
#else // USE_TFLITE
interpreter(nullptr)
, fbmodel(nullptr)
#endif // USE_TFLITE
, ncep(0)
, ncontext(0)
, alphabet(nullptr)
, scorer(nullptr)
, beam_width(0)
, n_steps(-1)
, n_context(-1)
, n_features(-1)
, mfcc_feats_per_timestep(-1)
, sample_rate(DEFAULT_SAMPLE_RATE)
, audio_win_len(DEFAULT_WINDOW_LENGTH)
, audio_win_step(DEFAULT_WINDOW_STEP)
#ifdef USE_TFLITE
, previous_state_size(0)
, previous_state_c_(nullptr)
, previous_state_h_(nullptr)
#endif
StreamingState::StreamingState()
{
}
ModelState::~ModelState()
StreamingState::~StreamingState()
{
#ifndef USE_TFLITE
if (session) {
Status status = session->Close();
if (!status.ok()) {
std::cerr << "Error closing TensorFlow session: " << status << std::endl;
}
}
delete mmap_env;
#endif // USE_TFLITE
delete scorer;
delete alphabet;
}
template<typename T>
@ -243,19 +111,19 @@ StreamingState::feedAudioContent(const short* buffer,
{
// Consume all the data that was passed in, processing full buffers if needed
while (buffer_size > 0) {
while (buffer_size > 0 && audio_buffer.size() < model->audio_win_len) {
while (buffer_size > 0 && audio_buffer_.size() < model_->audio_win_len_) {
// Convert i16 sample into f32
float multiplier = 1.0f / (1 << 15);
audio_buffer.push_back((float)(*buffer) * multiplier);
audio_buffer_.push_back((float)(*buffer) * multiplier);
++buffer;
--buffer_size;
}
// If the buffer is full, process and shift it
if (audio_buffer.size() == model->audio_win_len) {
processAudioWindow(audio_buffer);
if (audio_buffer_.size() == model_->audio_win_len_) {
processAudioWindow(audio_buffer_);
// Shift data by one step
shift_buffer_left(audio_buffer, model->audio_win_step);
shift_buffer_left(audio_buffer_, model_->audio_win_step_);
}
// Repeat until buffer empty
@ -265,21 +133,21 @@ StreamingState::feedAudioContent(const short* buffer,
char*
StreamingState::intermediateDecode()
{
return model->decode(decoder_state.get());
return model_->decode(decoder_state_.get());
}
char*
StreamingState::finishStream()
{
finalizeStream();
return model->decode(decoder_state.get());
return model_->decode(decoder_state_.get());
}
Metadata*
StreamingState::finishStreamWithMetadata()
{
finalizeStream();
return model->decode_metadata(decoder_state.get());
return model_->decode_metadata(decoder_state_.get());
}
void
@ -287,8 +155,8 @@ StreamingState::processAudioWindow(const vector<float>& buf)
{
// Compute MFCC features
vector<float> mfcc;
mfcc.reserve(model->n_features);
model->compute_mfcc(buf, mfcc);
mfcc.reserve(model_->n_features_);
model_->compute_mfcc(buf, mfcc);
pushMfccBuffer(mfcc);
}
@ -296,23 +164,23 @@ void
StreamingState::finalizeStream()
{
// Flush audio buffer
processAudioWindow(audio_buffer);
processAudioWindow(audio_buffer_);
// Add empty mfcc vectors at end of sample
for (int i = 0; i < model->n_context; ++i) {
for (int i = 0; i < model_->n_context_; ++i) {
addZeroMfccWindow();
}
// Process final batch
if (batch_buffer.size() > 0) {
processBatch(batch_buffer, batch_buffer.size()/model->mfcc_feats_per_timestep);
if (batch_buffer_.size() > 0) {
processBatch(batch_buffer_, batch_buffer_.size()/model_->mfcc_feats_per_timestep_);
}
}
void
StreamingState::addZeroMfccWindow()
{
vector<float> zero_buffer(model->n_features, 0.f);
vector<float> zero_buffer(model_->n_features_, 0.f);
pushMfccBuffer(zero_buffer);
}
@ -332,15 +200,15 @@ StreamingState::pushMfccBuffer(const vector<float>& buf)
auto end = buf.end();
while (start != end) {
// Copy from input buffer to mfcc_buffer, stopping if we have a full context window
start = copy_up_to_n(start, end, std::back_inserter(mfcc_buffer),
model->mfcc_feats_per_timestep - mfcc_buffer.size());
assert(mfcc_buffer.size() <= model->mfcc_feats_per_timestep);
start = copy_up_to_n(start, end, std::back_inserter(mfcc_buffer_),
model_->mfcc_feats_per_timestep_ - mfcc_buffer_.size());
assert(mfcc_buffer_.size() <= model_->mfcc_feats_per_timestep_);
// If we have a full context window
if (mfcc_buffer.size() == model->mfcc_feats_per_timestep) {
processMfccWindow(mfcc_buffer);
if (mfcc_buffer_.size() == model_->mfcc_feats_per_timestep_) {
processMfccWindow(mfcc_buffer_);
// Shift data by one step of one mfcc feature vector
shift_buffer_left(mfcc_buffer, model->n_features);
shift_buffer_left(mfcc_buffer_, model_->n_features_);
}
}
}
@ -352,14 +220,14 @@ StreamingState::processMfccWindow(const vector<float>& buf)
auto end = buf.end();
while (start != end) {
// Copy from input buffer to batch_buffer, stopping if we have a full batch
start = copy_up_to_n(start, end, std::back_inserter(batch_buffer),
model->n_steps * model->mfcc_feats_per_timestep - batch_buffer.size());
assert(batch_buffer.size() <= model->n_steps * model->mfcc_feats_per_timestep);
start = copy_up_to_n(start, end, std::back_inserter(batch_buffer_),
model_->n_steps_ * model_->mfcc_feats_per_timestep_ - batch_buffer_.size());
assert(batch_buffer_.size() <= model_->n_steps_ * model_->mfcc_feats_per_timestep_);
// If we have a full batch
if (batch_buffer.size() == model->n_steps * model->mfcc_feats_per_timestep) {
processBatch(batch_buffer, model->n_steps);
batch_buffer.resize(0);
if (batch_buffer_.size() == model_->n_steps_ * model_->mfcc_feats_per_timestep_) {
processBatch(batch_buffer_, model_->n_steps_);
batch_buffer_.resize(0);
}
}
}
@ -368,272 +236,33 @@ void
StreamingState::processBatch(const vector<float>& buf, unsigned int n_steps)
{
vector<float> logits;
model->infer(buf.data(), n_steps, logits);
model_->infer(buf,
n_steps,
previous_state_c_,
previous_state_h_,
logits,
previous_state_c_,
previous_state_h_);
const int cutoff_top_n = 40;
const double cutoff_prob = 1.0;
const size_t num_classes = model->alphabet->GetSize() + 1; // +1 for blank
const int n_frames = logits.size() / (BATCH_SIZE * num_classes);
const size_t num_classes = model_->alphabet_->GetSize() + 1; // +1 for blank
const int n_frames = logits.size() / (ModelState::BATCH_SIZE * num_classes);
// Convert logits to double
vector<double> inputs(logits.begin(), logits.end());
decoder_next(inputs.data(),
*model->alphabet,
decoder_state.get(),
*model_->alphabet_,
decoder_state_.get(),
n_frames,
num_classes,
cutoff_prob,
cutoff_top_n,
model->beam_width,
model->scorer);
model_->beam_width_,
model_->scorer_);
}
void
ModelState::infer(const float* aMfcc, unsigned int n_frames, vector<float>& logits_output)
{
const size_t num_classes = alphabet->GetSize() + 1; // +1 for blank
#ifndef USE_TFLITE
Tensor input(DT_FLOAT, TensorShape({BATCH_SIZE, n_steps, 2*n_context+1, n_features}));
auto input_mapped = input.flat<float>();
int i;
for (i = 0; i < n_frames*mfcc_feats_per_timestep; ++i) {
input_mapped(i) = aMfcc[i];
}
for (; i < n_steps*mfcc_feats_per_timestep; ++i) {
input_mapped(i) = 0.;
}
Tensor input_lengths(DT_INT32, TensorShape({1}));
input_lengths.scalar<int>()() = n_frames;
vector<Tensor> outputs;
Status status = session->Run(
{{"input_node", input}, {"input_lengths", input_lengths}},
{"logits"}, {}, &outputs);
if (!status.ok()) {
std::cerr << "Error running session: " << status << "\n";
return;
}
auto logits_mapped = outputs[0].flat<float>();
// The CTCDecoder works with log-probs.
for (int t = 0; t < n_frames * BATCH_SIZE * num_classes; ++t) {
logits_output.push_back(logits_mapped(t));
}
#else // USE_TFLITE
// Feeding input_node
float* input_node = interpreter->typed_tensor<float>(input_node_idx);
{
int i;
for (i = 0; i < n_frames*mfcc_feats_per_timestep; ++i) {
input_node[i] = aMfcc[i];
}
for (; i < n_steps*mfcc_feats_per_timestep; ++i) {
input_node[i] = 0;
}
}
assert(previous_state_size > 0);
// Feeding previous_state_c, previous_state_h
memcpy(interpreter->typed_tensor<float>(previous_state_c_idx), previous_state_c_.get(), sizeof(float) * previous_state_size);
memcpy(interpreter->typed_tensor<float>(previous_state_h_idx), previous_state_h_.get(), sizeof(float) * previous_state_size);
interpreter->SetExecutionPlan(acoustic_exec_plan);
TfLiteStatus status = interpreter->Invoke();
if (status != kTfLiteOk) {
std::cerr << "Error running session: " << status << "\n";
return;
}
float* outputs = interpreter->typed_tensor<float>(logits_idx);
// The CTCDecoder works with log-probs.
for (int t = 0; t < n_frames * BATCH_SIZE * num_classes; ++t) {
logits_output.push_back(outputs[t]);
}
memcpy(previous_state_c_.get(), interpreter->typed_tensor<float>(new_state_c_idx), sizeof(float) * previous_state_size);
memcpy(previous_state_h_.get(), interpreter->typed_tensor<float>(new_state_h_idx), sizeof(float) * previous_state_size);
#endif // USE_TFLITE
}
void
ModelState::compute_mfcc(const vector<float>& samples, vector<float>& mfcc_output)
{
#ifndef USE_TFLITE
Tensor input(DT_FLOAT, TensorShape({audio_win_len}));
auto input_mapped = input.flat<float>();
int i;
for (i = 0; i < samples.size(); ++i) {
input_mapped(i) = samples[i];
}
for (; i < audio_win_len; ++i) {
input_mapped(i) = 0.f;
}
vector<Tensor> outputs;
Status status = session->Run({{"input_samples", input}}, {"mfccs"}, {}, &outputs);
if (!status.ok()) {
std::cerr << "Error running session: " << status << "\n";
return;
}
// The feature computation graph is hardcoded to one audio length for now
const int n_windows = 1;
assert(outputs[0].shape().num_elemements() / n_features == n_windows);
auto mfcc_mapped = outputs[0].flat<float>();
for (int i = 0; i < n_windows * n_features; ++i) {
mfcc_output.push_back(mfcc_mapped(i));
}
#else
// Feeding input_node
float* input_samples = interpreter->typed_tensor<float>(input_samples_idx);
for (int i = 0; i < samples.size(); ++i) {
input_samples[i] = samples[i];
}
interpreter->SetExecutionPlan(mfcc_exec_plan);
TfLiteStatus status = interpreter->Invoke();
if (status != kTfLiteOk) {
std::cerr << "Error running session: " << status << "\n";
return;
}
// The feature computation graph is hardcoded to one audio length for now
int n_windows = 1;
TfLiteIntArray* out_dims = interpreter->tensor(mfccs_idx)->dims;
int num_elements = 1;
for (int i = 0; i < out_dims->size; ++i) {
num_elements *= out_dims->data[i];
}
assert(num_elements / n_features == n_windows);
float* outputs = interpreter->typed_tensor<float>(mfccs_idx);
for (int i = 0; i < n_windows * n_features; ++i) {
mfcc_output.push_back(outputs[i]);
}
#endif
}
char*
ModelState::decode(DecoderState* state)
{
vector<Output> out = ModelState::decode_raw(state);
return strdup(alphabet->LabelsToString(out[0].tokens).c_str());
}
vector<Output>
ModelState::decode_raw(DecoderState* state)
{
vector<Output> out = decoder_decode(state, *alphabet, beam_width, scorer);
return out;
}
Metadata*
ModelState::decode_metadata(DecoderState* state)
{
vector<Output> out = decode_raw(state);
std::unique_ptr<Metadata> metadata(new Metadata());
metadata->num_items = out[0].tokens.size();
metadata->probability = out[0].probability;
std::unique_ptr<MetadataItem[]> items(new MetadataItem[metadata->num_items]());
// Loop through each character
for (int i = 0; i < out[0].tokens.size(); ++i) {
items[i].character = strdup(alphabet->StringFromLabel(out[0].tokens[i]).c_str());
items[i].timestep = out[0].timesteps[i];
items[i].start_time = out[0].timesteps[i] * ((float)audio_win_step / sample_rate);
if (items[i].start_time < 0) {
items[i].start_time = 0;
}
}
metadata->items = items.release();
return metadata.release();
}
#ifdef USE_TFLITE
int
tflite_get_tensor_by_name(const ModelState* ctx, const vector<int>& list, const char* name)
{
int rv = -1;
for (int i = 0; i < list.size(); ++i) {
const string& node_name = ctx->interpreter->tensor(list[i])->name;
if (node_name.compare(string(name)) == 0) {
rv = i;
}
}
assert(rv >= 0);
return rv;
}
int
tflite_get_input_tensor_by_name(const ModelState* ctx, const char* name)
{
return ctx->interpreter->inputs()[tflite_get_tensor_by_name(ctx, ctx->interpreter->inputs(), name)];
}
int
tflite_get_output_tensor_by_name(const ModelState* ctx, const char* name)
{
return ctx->interpreter->outputs()[tflite_get_tensor_by_name(ctx, ctx->interpreter->outputs(), name)];
}
void push_back_if_not_present(std::deque<int>& list, int value) {
if (std::find(list.begin(), list.end(), value) == list.end()) {
list.push_back(value);
}
}
// Backwards BFS on the node DAG. At each iteration we get the next tensor id
// from the frontier list, then for each node which has that tensor id as an
// output, add it to the parent list, and add its input tensors to the frontier
// list. Because we start from the final tensor and work backwards to the inputs,
// the parents list is constructed in reverse, adding elements to its front.
std::vector<int>
tflite_find_parent_node_ids(Interpreter* interpreter, int tensor_id)
{
std::deque<int> parents;
std::deque<int> frontier;
frontier.push_back(tensor_id);
while (!frontier.empty()) {
int next_tensor_id = frontier.front();
frontier.pop_front();
// Find all nodes that have next_tensor_id as an output
for (int node_id = 0; node_id < interpreter->nodes_size(); ++node_id) {
TfLiteNode node = interpreter->node_and_registration(node_id)->first;
// Search node outputs for the tensor we're looking for
for (int i = 0; i < node.outputs->size; ++i) {
if (node.outputs->data[i] == next_tensor_id) {
// This node is part of the parent tree, add it to the parent list and
// add its input tensors to the frontier list
parents.push_front(node_id);
for (int j = 0; j < node.inputs->size; ++j) {
push_back_if_not_present(frontier, node.inputs->data[j]);
}
}
}
}
}
return std::vector<int>(parents.begin(), parents.end());
}
#endif
int
DS_CreateModel(const char* aModelPath,
unsigned int aNCep,
@ -642,15 +271,6 @@ DS_CreateModel(const char* aModelPath,
unsigned int aBeamWidth,
ModelState** retval)
{
std::unique_ptr<ModelState> model(new ModelState());
#ifndef USE_TFLITE
model->mmap_env = new MemmappedEnv(Env::Default());
#endif // USE_TFLITE
model->ncep = aNCep;
model->ncontext = aNContext;
model->alphabet = new Alphabet(aAlphabetConfigPath);
model->beam_width = aBeamWidth;
*retval = nullptr;
DS_PrintVersions();
@ -660,183 +280,26 @@ DS_CreateModel(const char* aModelPath,
return DS_ERR_NO_MODEL;
}
std::unique_ptr<ModelState> model(
#ifndef USE_TFLITE
Status status;
SessionOptions options;
new TFModelState()
#else
new TFLiteModelState()
#endif
);
bool is_mmap = std::string(aModelPath).find(".pbmm") != std::string::npos;
if (!is_mmap) {
std::cerr << "Warning: reading entire model file into memory. Transform model file into an mmapped graph to reduce heap usage." << std::endl;
} else {
status = model->mmap_env->InitializeFromFile(aModelPath);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_INIT_MMAP;
}
options.config.mutable_graph_options()
->mutable_optimizer_options()
->set_opt_level(::OptimizerOptions::L0);
options.env = model->mmap_env;
if (!model) {
std::cerr << "Could not allocate model state." << std::endl;
return DS_ERR_FAIL_CREATE_MODEL;
}
status = NewSession(options, &model->session);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_INIT_SESS;
}
if (is_mmap) {
status = ReadBinaryProto(model->mmap_env,
MemmappedFileSystem::kMemmappedPackageDefaultGraphDef,
&model->graph_def);
} else {
status = ReadBinaryProto(Env::Default(), aModelPath, &model->graph_def);
}
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_READ_PROTOBUF;
}
status = model->session->Create(model->graph_def);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_CREATE_SESS;
}
int graph_version = model->graph_def.version();
if (graph_version < DS_GRAPH_VERSION) {
std::cerr << "Specified model file version (" << graph_version << ") is "
<< "incompatible with minimum version supported by this client ("
<< DS_GRAPH_VERSION << "). See "
<< "https://github.com/mozilla/DeepSpeech/#model-compatibility "
<< "for more information" << std::endl;
return DS_ERR_MODEL_INCOMPATIBLE;
}
for (int i = 0; i < model->graph_def.node_size(); ++i) {
NodeDef node = model->graph_def.node(i);
if (node.name() == "input_node") {
const auto& shape = node.attr().at("shape").shape();
model->n_steps = shape.dim(1).size();
model->n_context = (shape.dim(2).size()-1)/2;
model->n_features = shape.dim(3).size();
model->mfcc_feats_per_timestep = shape.dim(2).size() * shape.dim(3).size();
} else if (node.name() == "logits_shape") {
Tensor logits_shape = Tensor(DT_INT32, TensorShape({3}));
if (!logits_shape.FromProto(node.attr().at("value").tensor())) {
continue;
}
int final_dim_size = logits_shape.vec<int>()(2) - 1;
if (final_dim_size != model->alphabet->GetSize()) {
std::cerr << "Error: Alphabet size does not match loaded model: alphabet "
<< "has size " << model->alphabet->GetSize()
<< ", but model has " << final_dim_size
<< " classes in its output. Make sure you're passing an alphabet "
<< "file with the same size as the one used for training."
<< std::endl;
return DS_ERR_INVALID_ALPHABET;
}
} else if (node.name() == "model_metadata") {
int sample_rate = node.attr().at("sample_rate").i();
model->sample_rate = sample_rate;
int win_len_ms = node.attr().at("feature_win_len").i();
int win_step_ms = node.attr().at("feature_win_step").i();
model->audio_win_len = sample_rate * (win_len_ms / 1000.0);
model->audio_win_step = sample_rate * (win_step_ms / 1000.0);
}
}
if (model->n_context == -1 || model->n_features == -1) {
std::cerr << "Error: Could not infer input shape from model file. "
<< "Make sure input_node is a 4D tensor with shape "
<< "[batch_size=1, time, window_size, n_features]."
<< std::endl;
return DS_ERR_INVALID_SHAPE;
int err = model->init(aModelPath, aNCep, aNContext, aAlphabetConfigPath, aBeamWidth);
if (err != DS_ERR_OK) {
return err;
}
*retval = model.release();
return DS_ERR_OK;
#else // USE_TFLITE
model->fbmodel = tflite::FlatBufferModel::BuildFromFile(aModelPath);
if (!model->fbmodel) {
std::cerr << "Error at reading model file " << aModelPath << std::endl;
return DS_ERR_FAIL_INIT_MMAP;
}
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model->fbmodel, resolver)(&model->interpreter);
if (!model->interpreter) {
std::cerr << "Error at InterpreterBuilder for model file " << aModelPath << std::endl;
return DS_ERR_FAIL_INTERPRETER;
}
model->interpreter->AllocateTensors();
model->interpreter->SetNumThreads(4);
// Query all the index once
model->input_node_idx = tflite_get_input_tensor_by_name(model.get(), "input_node");
model->previous_state_c_idx = tflite_get_input_tensor_by_name(model.get(), "previous_state_c");
model->previous_state_h_idx = tflite_get_input_tensor_by_name(model.get(), "previous_state_h");
model->input_samples_idx = tflite_get_input_tensor_by_name(model.get(), "input_samples");
model->logits_idx = tflite_get_output_tensor_by_name(model.get(), "logits");
model->new_state_c_idx = tflite_get_output_tensor_by_name(model.get(), "new_state_c");
model->new_state_h_idx = tflite_get_output_tensor_by_name(model.get(), "new_state_h");
model->mfccs_idx = tflite_get_output_tensor_by_name(model.get(), "mfccs");
// When we call Interpreter::Invoke, the whole graph is executed by default,
// which means every time compute_mfcc is called the entire acoustic model is
// also executed. To workaround that problem, we walk up the dependency DAG
// from the mfccs output tensor to find all the relevant nodes required for
// feature computation, building an execution plan that runs just those nodes.
auto mfcc_plan = tflite_find_parent_node_ids(model->interpreter.get(), model->mfccs_idx);
auto orig_plan = model->interpreter->execution_plan();
// Remove MFCC nodes from original plan (all nodes) to create the acoustic model plan
auto erase_begin = std::remove_if(orig_plan.begin(), orig_plan.end(), [&mfcc_plan](int elem) {
return std::find(mfcc_plan.begin(), mfcc_plan.end(), elem) != mfcc_plan.end();
});
orig_plan.erase(erase_begin, orig_plan.end());
model->acoustic_exec_plan = std::move(orig_plan);
model->mfcc_exec_plan = std::move(mfcc_plan);
TfLiteIntArray* dims_input_node = model->interpreter->tensor(model->input_node_idx)->dims;
model->n_steps = dims_input_node->data[1];
model->n_context = (dims_input_node->data[2] - 1 ) / 2;
model->n_features = dims_input_node->data[3];
model->mfcc_feats_per_timestep = dims_input_node->data[2] * dims_input_node->data[3];
TfLiteIntArray* dims_logits = model->interpreter->tensor(model->logits_idx)->dims;
const int final_dim_size = dims_logits->data[1] - 1;
if (final_dim_size != model->alphabet->GetSize()) {
std::cerr << "Error: Alphabet size does not match loaded model: alphabet "
<< "has size " << model->alphabet->GetSize()
<< ", but model has " << final_dim_size
<< " classes in its output. Make sure you're passing an alphabet "
<< "file with the same size as the one used for training."
<< std::endl;
return DS_ERR_INVALID_ALPHABET;
}
TfLiteIntArray* dims_c = model->interpreter->tensor(model->previous_state_c_idx)->dims;
TfLiteIntArray* dims_h = model->interpreter->tensor(model->previous_state_h_idx)->dims;
assert(dims_c->data[1] == dims_h->data[1]);
model->previous_state_size = dims_c->data[1];
model->previous_state_c_.reset(new float[model->previous_state_size]());
model->previous_state_h_.reset(new float[model->previous_state_size]());
// Set initial values for previous_state_c and previous_state_h
memset(model->previous_state_c_.get(), 0, sizeof(float) * model->previous_state_size);
memset(model->previous_state_h_.get(), 0, sizeof(float) * model->previous_state_size);
*retval = model.release();
return DS_ERR_OK;
#endif // USE_TFLITE
}
void
@ -854,10 +317,10 @@ DS_EnableDecoderWithLM(ModelState* aCtx,
float aLMBeta)
{
try {
aCtx->scorer = new Scorer(aLMAlpha, aLMBeta,
aLMPath ? aLMPath : "",
aTriePath ? aTriePath : "",
*aCtx->alphabet);
aCtx->scorer_ = new Scorer(aLMAlpha, aLMBeta,
aLMPath ? aLMPath : "",
aTriePath ? aTriePath : "",
*aCtx->alphabet_);
return DS_ERR_OK;
} catch (...) {
return DS_ERR_INVALID_LM;
@ -872,41 +335,28 @@ DS_SetupStream(ModelState* aCtx,
{
*retval = nullptr;
#ifndef USE_TFLITE
Status status = aCtx->session->Run({}, {}, {"initialize_state"}, nullptr);
if (!status.ok()) {
std::cerr << "Error running session: " << status << std::endl;
return DS_ERR_FAIL_RUN_SESS;
}
#endif // USE_TFLITE
std::unique_ptr<StreamingState> ctx(new StreamingState());
if (!ctx) {
std::cerr << "Could not allocate streaming state." << std::endl;
return DS_ERR_FAIL_CREATE_STREAM;
}
const size_t num_classes = aCtx->alphabet->GetSize() + 1; // +1 for blank
const size_t num_classes = aCtx->alphabet_->GetSize() + 1; // +1 for blank
// Default initial allocation = 3 seconds.
if (aPreAllocFrames == 0) {
aPreAllocFrames = 150;
}
ctx->audio_buffer.reserve(aCtx->audio_win_len);
ctx->mfcc_buffer.reserve(aCtx->mfcc_feats_per_timestep);
ctx->mfcc_buffer.resize(aCtx->n_features*aCtx->n_context, 0.f);
ctx->batch_buffer.reserve(aCtx->n_steps * aCtx->mfcc_feats_per_timestep);
ctx->audio_buffer_.reserve(aCtx->audio_win_len_);
ctx->mfcc_buffer_.reserve(aCtx->mfcc_feats_per_timestep_);
ctx->mfcc_buffer_.resize(aCtx->n_features_*aCtx->n_context_, 0.f);
ctx->batch_buffer_.reserve(aCtx->n_steps_ * aCtx->mfcc_feats_per_timestep_);
ctx->previous_state_c_.resize(aCtx->state_size_, 0.f);
ctx->previous_state_h_.resize(aCtx->state_size_, 0.f);
ctx->model_ = aCtx;
ctx->model = aCtx;
#ifdef USE_TFLITE
/* Ensure previous_state_{c,h} are not holding previous stream value */
memset(ctx->model->previous_state_c_.get(), 0, sizeof(float) * ctx->model->previous_state_size);
memset(ctx->model->previous_state_h_.get(), 0, sizeof(float) * ctx->model->previous_state_size);
#endif // USE_TFLITE
ctx->decoder_state.reset(decoder_init(*aCtx->alphabet, num_classes, aCtx->scorer));
ctx->decoder_state_.reset(decoder_init(*aCtx->alphabet_, num_classes, aCtx->scorer_));
*retval = ctx.release();
return DS_ERR_OK;
@ -1012,4 +462,3 @@ DS_PrintVersions() {
LOGD("DeepSpeech: %s", ds_git_version());
#endif
}

View File

@ -52,6 +52,7 @@ enum DeepSpeech_Error_Codes
DS_ERR_FAIL_CREATE_STREAM = 0x3004,
DS_ERR_FAIL_READ_PROTOBUF = 0x3005,
DS_ERR_FAIL_CREATE_SESS = 0x3006,
DS_ERR_FAIL_CREATE_MODEL = 0x3007,
};
/**

View File

@ -0,0 +1,82 @@
#include <vector>
#include "ctcdecode/ctc_beam_search_decoder.h"
#include "modelstate.h"
using std::vector;
ModelState::ModelState()
: alphabet_(nullptr)
, scorer_(nullptr)
, beam_width_(-1)
, n_steps_(-1)
, n_context_(-1)
, n_features_(-1)
, mfcc_feats_per_timestep_(-1)
, sample_rate_(DEFAULT_SAMPLE_RATE)
, audio_win_len_(DEFAULT_WINDOW_LENGTH)
, audio_win_step_(DEFAULT_WINDOW_STEP)
, state_size_(-1)
{
}
ModelState::~ModelState()
{
delete scorer_;
delete alphabet_;
}
int
ModelState::init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width)
{
n_features_ = n_features;
n_context_ = n_context;
alphabet_ = new Alphabet(alphabet_path);
beam_width_ = beam_width;
return DS_ERR_OK;
}
vector<Output>
ModelState::decode_raw(DecoderState* state)
{
vector<Output> out = decoder_decode(state, *alphabet_, beam_width_, scorer_);
return out;
}
char*
ModelState::decode(DecoderState* state)
{
vector<Output> out = decode_raw(state);
return strdup(alphabet_->LabelsToString(out[0].tokens).c_str());
}
Metadata*
ModelState::decode_metadata(DecoderState* state)
{
vector<Output> out = decode_raw(state);
std::unique_ptr<Metadata> metadata(new Metadata());
metadata->num_items = out[0].tokens.size();
metadata->probability = out[0].probability;
std::unique_ptr<MetadataItem[]> items(new MetadataItem[metadata->num_items]());
// Loop through each character
for (int i = 0; i < out[0].tokens.size(); ++i) {
items[i].character = strdup(alphabet_->StringFromLabel(out[0].tokens[i]).c_str());
items[i].timestep = out[0].timesteps[i];
items[i].start_time = out[0].timesteps[i] * ((float)audio_win_step_ / sample_rate_);
if (items[i].start_time < 0) {
items[i].start_time = 0;
}
}
metadata->items = items.release();
return metadata.release();
}

View File

@ -0,0 +1,93 @@
#ifndef MODELSTATE_H
#define MODELSTATE_H
#include <vector>
#include "deepspeech.h"
#include "alphabet.h"
#include "ctcdecode/scorer.h"
#include "ctcdecode/output.h"
#include "ctcdecode/decoderstate.h"
struct ModelState {
//TODO: infer batch size from model/use dynamic batch size
static constexpr unsigned int BATCH_SIZE = 1;
static constexpr unsigned int DEFAULT_SAMPLE_RATE = 16000;
static constexpr unsigned int DEFAULT_WINDOW_LENGTH = DEFAULT_SAMPLE_RATE * 0.032;
static constexpr unsigned int DEFAULT_WINDOW_STEP = DEFAULT_SAMPLE_RATE * 0.02;
Alphabet* alphabet_;
Scorer* scorer_;
unsigned int beam_width_;
unsigned int n_steps_;
unsigned int n_context_;
unsigned int n_features_;
unsigned int mfcc_feats_per_timestep_;
unsigned int sample_rate_;
unsigned int audio_win_len_;
unsigned int audio_win_step_;
unsigned int state_size_;
ModelState();
virtual ~ModelState();
virtual int init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width);
virtual void compute_mfcc(const std::vector<float>& audio_buffer, std::vector<float>& mfcc_output) = 0;
/**
* @brief Do a single inference step in the acoustic model, with:
* input=mfcc
* input_lengths=[n_frames]
*
* @param mfcc batch input data
* @param n_frames number of timesteps in the data
*
* @param[out] output_logits Where to store computed logits.
*/
virtual void infer(const std::vector<float>& mfcc,
unsigned int n_frames,
const std::vector<float>& previous_state_c,
const std::vector<float>& previous_state_h,
std::vector<float>& logits_output,
std::vector<float>& state_c_output,
std::vector<float>& state_h_output) = 0;
/**
* @brief Perform decoding of the logits, using basic CTC decoder or
* CTC decoder with KenLM enabled
*
* @param state Decoder state to use when decoding.
*
* @return Vector of Output structs directly from the CTC decoder for additional processing.
*/
virtual std::vector<Output> decode_raw(DecoderState* state);
/**
* @brief Perform decoding of the logits, using basic CTC decoder or
* CTC decoder with KenLM enabled
*
* @param state Decoder state to use when decoding.
*
* @return String representing the decoded text.
*/
virtual char* decode(DecoderState* state);
/**
* @brief Return character-level metadata including letter timings.
*
* @param state Decoder state to use when decoding.
*
* @return Metadata struct containing MetadataItem structs for each character.
* The user is responsible for freeing Metadata by calling DS_FreeMetadata().
*/
virtual Metadata* decode_metadata(DecoderState* state);
};
#endif // MODELSTATE_H

View File

@ -0,0 +1,78 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import argparse
import numpy as np
import wave
from deepspeech import Model
# These constants control the beam search decoder
# Beam width used in the CTC decoder when building candidate transcriptions
BEAM_WIDTH = 500
# The alpha hyperparameter of the CTC decoder. Language Model weight
LM_ALPHA = 0.75
# The beta hyperparameter of the CTC decoder. Word insertion bonus.
LM_BETA = 1.85
# These constants are tied to the shape of the graph used (changing them changes
# the geometry of the first layer), so make sure you use the same constants that
# were used during training
# Number of MFCC features to use
N_FEATURES = 26
# Size of the context window used for producing timesteps in the input vector
N_CONTEXT = 9
def main():
parser = argparse.ArgumentParser(description='Running DeepSpeech inference.')
parser.add_argument('--model', required=True,
help='Path to the model (protocol buffer binary file)')
parser.add_argument('--alphabet', required=True,
help='Path to the configuration file specifying the alphabet used by the network')
parser.add_argument('--lm', nargs='?',
help='Path to the language model binary file')
parser.add_argument('--trie', nargs='?',
help='Path to the language model trie file created with native_client/generate_trie')
parser.add_argument('--audio1', required=True,
help='First audio file to use in interleaved streams')
parser.add_argument('--audio2', required=True,
help='Second audio file to use in interleaved streams')
args = parser.parse_args()
ds = Model(args.model, N_FEATURES, N_CONTEXT, args.alphabet, BEAM_WIDTH)
if args.lm and args.trie:
ds.enableDecoderWithLM(args.alphabet, args.lm, args.trie, LM_ALPHA, LM_BETA)
with wave.open(args.audio1, 'rb') as fin:
fs1 = fin.getframerate()
audio1 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
with wave.open(args.audio2, 'rb') as fin:
fs2 = fin.getframerate()
audio2 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
stream1 = ds.setupStream(sample_rate=fs1)
stream2 = ds.setupStream(sample_rate=fs2)
splits1 = np.array_split(audio1, 10)
splits2 = np.array_split(audio2, 10)
for part1, part2 in zip(splits1, splits2):
ds.feedAudioContent(stream1, part1)
ds.feedAudioContent(stream2, part2)
print(ds.finishStream(stream1))
print(ds.finishStream(stream2))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,269 @@
#include "tflitemodelstate.h"
using namespace tflite;
using std::vector;
int
TFLiteModelState::get_tensor_by_name(const vector<int>& list,
const char* name)
{
int rv = -1;
for (int i = 0; i < list.size(); ++i) {
const string& node_name = interpreter_->tensor(list[i])->name;
if (node_name.compare(string(name)) == 0) {
rv = i;
}
}
assert(rv >= 0);
return rv;
}
int
TFLiteModelState::get_input_tensor_by_name(const char* name)
{
int idx = get_tensor_by_name(interpreter_->inputs(), name);
return interpreter_->inputs()[idx];
}
int
TFLiteModelState::get_output_tensor_by_name(const char* name)
{
int idx = get_tensor_by_name(interpreter_->outputs(), name);
return interpreter_->outputs()[idx];
}
void
push_back_if_not_present(std::deque<int>& list, int value)
{
if (std::find(list.begin(), list.end(), value) == list.end()) {
list.push_back(value);
}
}
// Backwards BFS on the node DAG. At each iteration we get the next tensor id
// from the frontier list, then for each node which has that tensor id as an
// output, add it to the parent list, and add its input tensors to the frontier
// list. Because we start from the final tensor and work backwards to the inputs,
// the parents list is constructed in reverse, adding elements to its front.
vector<int>
TFLiteModelState::find_parent_node_ids(int tensor_id)
{
std::deque<int> parents;
std::deque<int> frontier;
frontier.push_back(tensor_id);
while (!frontier.empty()) {
int next_tensor_id = frontier.front();
frontier.pop_front();
// Find all nodes that have next_tensor_id as an output
for (int node_id = 0; node_id < interpreter_->nodes_size(); ++node_id) {
TfLiteNode node = interpreter_->node_and_registration(node_id)->first;
// Search node outputs for the tensor we're looking for
for (int i = 0; i < node.outputs->size; ++i) {
if (node.outputs->data[i] == next_tensor_id) {
// This node is part of the parent tree, add it to the parent list and
// add its input tensors to the frontier list
parents.push_front(node_id);
for (int j = 0; j < node.inputs->size; ++j) {
push_back_if_not_present(frontier, node.inputs->data[j]);
}
}
}
}
}
return vector<int>(parents.begin(), parents.end());
}
TFLiteModelState::TFLiteModelState()
: ModelState()
, interpreter_(nullptr)
, fbmodel_(nullptr)
{
}
TFLiteModelState::~TFLiteModelState()
{
}
int
TFLiteModelState::init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width)
{
int err = ModelState::init(model_path, n_features, n_context, alphabet_path, beam_width);
if (err != DS_ERR_OK) {
return err;
}
fbmodel_ = tflite::FlatBufferModel::BuildFromFile(model_path);
if (!fbmodel_) {
std::cerr << "Error at reading model file " << model_path << std::endl;
return DS_ERR_FAIL_INIT_MMAP;
}
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*fbmodel_, resolver)(&interpreter_);
if (!interpreter_) {
std::cerr << "Error at InterpreterBuilder for model file " << model_path << std::endl;
return DS_ERR_FAIL_INTERPRETER;
}
interpreter_->AllocateTensors();
interpreter_->SetNumThreads(4);
// Query all the index once
input_node_idx_ = get_input_tensor_by_name("input_node");
previous_state_c_idx_ = get_input_tensor_by_name("previous_state_c");
previous_state_h_idx_ = get_input_tensor_by_name("previous_state_h");
input_samples_idx_ = get_input_tensor_by_name("input_samples");
logits_idx_ = get_output_tensor_by_name("logits");
new_state_c_idx_ = get_output_tensor_by_name("new_state_c");
new_state_h_idx_ = get_output_tensor_by_name("new_state_h");
mfccs_idx_ = get_output_tensor_by_name("mfccs");
// When we call Interpreter::Invoke, the whole graph is executed by default,
// which means every time compute_mfcc is called the entire acoustic model is
// also executed. To workaround that problem, we walk up the dependency DAG
// from the mfccs output tensor to find all the relevant nodes required for
// feature computation, building an execution plan that runs just those nodes.
auto mfcc_plan = find_parent_node_ids(mfccs_idx_);
auto orig_plan = interpreter_->execution_plan();
// Remove MFCC nodes from original plan (all nodes) to create the acoustic model plan
auto erase_begin = std::remove_if(orig_plan.begin(), orig_plan.end(), [&mfcc_plan](int elem) {
return std::find(mfcc_plan.begin(), mfcc_plan.end(), elem) != mfcc_plan.end();
});
orig_plan.erase(erase_begin, orig_plan.end());
acoustic_exec_plan_ = std::move(orig_plan);
mfcc_exec_plan_ = std::move(mfcc_plan);
TfLiteIntArray* dims_input_node = interpreter_->tensor(input_node_idx_)->dims;
n_steps_ = dims_input_node->data[1];
n_context_ = (dims_input_node->data[2] - 1) / 2;
n_features_ = dims_input_node->data[3];
mfcc_feats_per_timestep_ = dims_input_node->data[2] * dims_input_node->data[3];
TfLiteIntArray* dims_logits = interpreter_->tensor(logits_idx_)->dims;
const int final_dim_size = dims_logits->data[1] - 1;
if (final_dim_size != alphabet_->GetSize()) {
std::cerr << "Error: Alphabet size does not match loaded model: alphabet "
<< "has size " << alphabet_->GetSize()
<< ", but model has " << final_dim_size
<< " classes in its output. Make sure you're passing an alphabet "
<< "file with the same size as the one used for training."
<< std::endl;
return DS_ERR_INVALID_ALPHABET;
}
TfLiteIntArray* dims_c = interpreter_->tensor(previous_state_c_idx_)->dims;
TfLiteIntArray* dims_h = interpreter_->tensor(previous_state_h_idx_)->dims;
assert(dims_c->data[1] == dims_h->data[1]);
assert(state_size_ > 0);
state_size_ = dims_c->data[1];
return DS_ERR_OK;
}
// Copy contents of vec into the tensor with index tensor_idx.
// If vec.size() < num_elements, set the remainder of the tensor values to zero.
void
TFLiteModelState::copy_vector_to_tensor(const vector<float>& vec,
int tensor_idx,
int num_elements)
{
float* tensor = interpreter_->typed_tensor<float>(tensor_idx);
int i;
for (i = 0; i < vec.size(); ++i) {
tensor[i] = vec[i];
}
for (; i < num_elements; ++i) {
tensor[i] = 0.f;
}
}
// Copy num_elements elements from the tensor with index tensor_idx into vec
void
TFLiteModelState::copy_tensor_to_vector(int tensor_idx,
int num_elements,
vector<float>& vec)
{
float* tensor = interpreter_->typed_tensor<float>(tensor_idx);
for (int i = 0; i < num_elements; ++i) {
vec.push_back(tensor[i]);
}
}
void
TFLiteModelState::infer(const vector<float>& mfcc,
unsigned int n_frames,
const vector<float>& previous_state_c,
const vector<float>& previous_state_h,
vector<float>& logits_output,
vector<float>& state_c_output,
vector<float>& state_h_output)
{
const size_t num_classes = alphabet_->GetSize() + 1; // +1 for blank
// Feeding input_node
copy_vector_to_tensor(mfcc, input_node_idx_, n_frames*mfcc_feats_per_timestep_);
// Feeding previous_state_c, previous_state_h
assert(previous_state_c.size() == state_size_);
copy_vector_to_tensor(previous_state_c, previous_state_c_idx_, state_size_);
assert(previous_state_h.size() == state_size_);
copy_vector_to_tensor(previous_state_h, previous_state_h_idx_, state_size_);
interpreter_->SetExecutionPlan(acoustic_exec_plan_);
TfLiteStatus status = interpreter_->Invoke();
if (status != kTfLiteOk) {
std::cerr << "Error running session: " << status << "\n";
return;
}
copy_tensor_to_vector(logits_idx_, n_frames * BATCH_SIZE * num_classes, logits_output);
state_c_output.clear();
state_c_output.reserve(state_size_);
copy_tensor_to_vector(new_state_c_idx_, state_size_, state_c_output);
state_h_output.clear();
state_h_output.reserve(state_size_);
copy_tensor_to_vector(new_state_h_idx_, state_size_, state_h_output);
}
void
TFLiteModelState::compute_mfcc(const vector<float>& samples,
vector<float>& mfcc_output)
{
// Feeding input_node
copy_vector_to_tensor(samples, input_samples_idx_, samples.size());
TfLiteStatus status = interpreter_->SetExecutionPlan(mfcc_exec_plan_);
if (status != kTfLiteOk) {
std::cerr << "Error setting execution plan: " << status << "\n";
return;
}
status = interpreter_->Invoke();
if (status != kTfLiteOk) {
std::cerr << "Error running session: " << status << "\n";
return;
}
// The feature computation graph is hardcoded to one audio length for now
int n_windows = 1;
TfLiteIntArray* out_dims = interpreter_->tensor(mfccs_idx_)->dims;
int num_elements = 1;
for (int i = 0; i < out_dims->size; ++i) {
num_elements *= out_dims->data[i];
}
assert(num_elements / n_features_ == n_windows);
copy_tensor_to_vector(mfccs_idx_, n_windows * n_features_, mfcc_output);
}

View File

@ -0,0 +1,63 @@
#ifndef TFLITEMODELSTATE_H
#define TFLITEMODELSTATE_H
#include <memory>
#include <vector>
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/kernels/register.h"
#include "modelstate.h"
struct TFLiteModelState : public ModelState
{
std::unique_ptr<tflite::Interpreter> interpreter_;
std::unique_ptr<tflite::FlatBufferModel> fbmodel_;
int input_node_idx_;
int previous_state_c_idx_;
int previous_state_h_idx_;
int input_samples_idx_;
int logits_idx_;
int new_state_c_idx_;
int new_state_h_idx_;
int mfccs_idx_;
std::vector<int> acoustic_exec_plan_;
std::vector<int> mfcc_exec_plan_;
TFLiteModelState();
virtual ~TFLiteModelState();
virtual int init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width) override;
virtual void compute_mfcc(const std::vector<float>& audio_buffer,
std::vector<float>& mfcc_output) override;
virtual void infer(const std::vector<float>& mfcc,
unsigned int n_frames,
const std::vector<float>& previous_state_c,
const std::vector<float>& previous_state_h,
std::vector<float>& logits_output,
std::vector<float>& state_c_output,
std::vector<float>& state_h_output) override;
private:
int get_tensor_by_name(const std::vector<int>& list, const char* name);
int get_input_tensor_by_name(const char* name);
int get_output_tensor_by_name(const char* name);
std::vector<int> find_parent_node_ids(int tensor_id);
void copy_vector_to_tensor(const std::vector<float>& vec,
int tensor_idx,
int num_elements);
void copy_tensor_to_vector(int tensor_idx,
int num_elements,
std::vector<float>& vec);
};
#endif // TFLITEMODELSTATE_H

View File

@ -0,0 +1,230 @@
#include "tfmodelstate.h"
#include "ds_graph_version.h"
using namespace tensorflow;
using std::vector;
TFModelState::TFModelState()
: ModelState()
, mmap_env_(nullptr)
, session_(nullptr)
{
}
TFModelState::~TFModelState()
{
if (session_) {
Status status = session_->Close();
if (!status.ok()) {
std::cerr << "Error closing TensorFlow session: " << status << std::endl;
}
}
delete mmap_env_;
}
int
TFModelState::init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width)
{
int err = ModelState::init(model_path, n_features, n_context, alphabet_path, beam_width);
if (err != DS_ERR_OK) {
return err;
}
Status status;
SessionOptions options;
mmap_env_ = new MemmappedEnv(Env::Default());
bool is_mmap = std::string(model_path).find(".pbmm") != std::string::npos;
if (!is_mmap) {
std::cerr << "Warning: reading entire model file into memory. Transform model file into an mmapped graph to reduce heap usage." << std::endl;
} else {
status = mmap_env_->InitializeFromFile(model_path);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_INIT_MMAP;
}
options.config.mutable_graph_options()
->mutable_optimizer_options()
->set_opt_level(::OptimizerOptions::L0);
options.env = mmap_env_;
}
status = NewSession(options, &session_);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_INIT_SESS;
}
if (is_mmap) {
status = ReadBinaryProto(mmap_env_,
MemmappedFileSystem::kMemmappedPackageDefaultGraphDef,
&graph_def_);
} else {
status = ReadBinaryProto(Env::Default(), model_path, &graph_def_);
}
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_READ_PROTOBUF;
}
status = session_->Create(graph_def_);
if (!status.ok()) {
std::cerr << status << std::endl;
return DS_ERR_FAIL_CREATE_SESS;
}
int graph_version = graph_def_.version();
if (graph_version < DS_GRAPH_VERSION) {
std::cerr << "Specified model file version (" << graph_version << ") is "
<< "incompatible with minimum version supported by this client ("
<< DS_GRAPH_VERSION << "). See "
<< "https://github.com/mozilla/DeepSpeech/#model-compatibility "
<< "for more information" << std::endl;
return DS_ERR_MODEL_INCOMPATIBLE;
}
for (int i = 0; i < graph_def_.node_size(); ++i) {
NodeDef node = graph_def_.node(i);
if (node.name() == "input_node") {
const auto& shape = node.attr().at("shape").shape();
n_steps_ = shape.dim(1).size();
n_context_ = (shape.dim(2).size()-1)/2;
n_features_ = shape.dim(3).size();
mfcc_feats_per_timestep_ = shape.dim(2).size() * shape.dim(3).size();
} else if (node.name() == "previous_state_c") {
const auto& shape = node.attr().at("shape").shape();
state_size_ = shape.dim(1).size();
} else if (node.name() == "logits_shape") {
Tensor logits_shape = Tensor(DT_INT32, TensorShape({3}));
if (!logits_shape.FromProto(node.attr().at("value").tensor())) {
continue;
}
int final_dim_size = logits_shape.vec<int>()(2) - 1;
if (final_dim_size != alphabet_->GetSize()) {
std::cerr << "Error: Alphabet size does not match loaded model: alphabet "
<< "has size " << alphabet_->GetSize()
<< ", but model has " << final_dim_size
<< " classes in its output. Make sure you're passing an alphabet "
<< "file with the same size as the one used for training."
<< std::endl;
return DS_ERR_INVALID_ALPHABET;
}
} else if (node.name() == "model_metadata") {
sample_rate_ = node.attr().at("sample_rate").i();
int win_len_ms = node.attr().at("feature_win_len").i();
int win_step_ms = node.attr().at("feature_win_step").i();
audio_win_len_ = sample_rate_ * (win_len_ms / 1000.0);
audio_win_step_ = sample_rate_ * (win_step_ms / 1000.0);
}
}
if (n_context_ == -1 || n_features_ == -1) {
std::cerr << "Error: Could not infer input shape from model file. "
<< "Make sure input_node is a 4D tensor with shape "
<< "[batch_size=1, time, window_size, n_features]."
<< std::endl;
return DS_ERR_INVALID_SHAPE;
}
return DS_ERR_OK;
}
Tensor
tensor_from_vector(const std::vector<float>& vec, const TensorShape& shape)
{
Tensor ret(DT_FLOAT, shape);
auto ret_mapped = ret.flat<float>();
int i;
for (i = 0; i < vec.size(); ++i) {
ret_mapped(i) = vec[i];
}
for (; i < shape.num_elements(); ++i) {
ret_mapped(i) = 0.f;
}
return ret;
}
void
copy_tensor_to_vector(const Tensor& tensor, vector<float>& vec, int num_elements = -1)
{
auto tensor_mapped = tensor.flat<float>();
if (num_elements == -1) {
num_elements = tensor.shape().num_elements();
}
for (int i = 0; i < num_elements; ++i) {
vec.push_back(tensor_mapped(i));
}
}
void
TFModelState::infer(const std::vector<float>& mfcc,
unsigned int n_frames,
const std::vector<float>& previous_state_c,
const std::vector<float>& previous_state_h,
vector<float>& logits_output,
vector<float>& state_c_output,
vector<float>& state_h_output)
{
const size_t num_classes = alphabet_->GetSize() + 1; // +1 for blank
Tensor input = tensor_from_vector(mfcc, TensorShape({BATCH_SIZE, n_steps_, 2*n_context_+1, n_features_}));
Tensor previous_state_c_t = tensor_from_vector(previous_state_c, TensorShape({BATCH_SIZE, (long long)state_size_}));
Tensor previous_state_h_t = tensor_from_vector(previous_state_h, TensorShape({BATCH_SIZE, (long long)state_size_}));
Tensor input_lengths(DT_INT32, TensorShape({1}));
input_lengths.scalar<int>()() = n_frames;
vector<Tensor> outputs;
Status status = session_->Run(
{
{"input_node", input},
{"input_lengths", input_lengths},
{"previous_state_c", previous_state_c_t},
{"previous_state_h", previous_state_h_t}
},
{"logits", "new_state_c", "new_state_h"},
{},
&outputs);
if (!status.ok()) {
std::cerr << "Error running session: " << status << "\n";
return;
}
copy_tensor_to_vector(outputs[0], logits_output, n_frames * BATCH_SIZE * num_classes);
state_c_output.clear();
state_c_output.reserve(state_size_);
copy_tensor_to_vector(outputs[1], state_c_output);
state_h_output.clear();
state_h_output.reserve(state_size_);
copy_tensor_to_vector(outputs[2], state_h_output);
}
void
TFModelState::compute_mfcc(const vector<float>& samples, vector<float>& mfcc_output)
{
Tensor input = tensor_from_vector(samples, TensorShape({audio_win_len_}));
vector<Tensor> outputs;
Status status = session_->Run({{"input_samples", input}}, {"mfccs"}, {}, &outputs);
if (!status.ok()) {
std::cerr << "Error running session: " << status << "\n";
return;
}
// The feature computation graph is hardcoded to one audio length for now
const int n_windows = 1;
assert(outputs[0].shape().num_elements() / n_features_ == n_windows);
copy_tensor_to_vector(outputs[0], mfcc_output);
}

View File

@ -0,0 +1,39 @@
#ifndef TFMODELSTATE_H
#define TFMODELSTATE_H
#include <vector>
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/util/memmapped_file_system.h"
#include "modelstate.h"
struct TFModelState : public ModelState
{
tensorflow::MemmappedEnv* mmap_env_;
tensorflow::Session* session_;
tensorflow::GraphDef graph_def_;
TFModelState();
virtual ~TFModelState();
virtual int init(const char* model_path,
unsigned int n_features,
unsigned int n_context,
const char* alphabet_path,
unsigned int beam_width) override;
virtual void infer(const std::vector<float>& mfcc,
unsigned int n_frames,
const std::vector<float>& previous_state_c,
const std::vector<float>& previous_state_h,
std::vector<float>& logits_output,
std::vector<float>& state_c_output,
std::vector<float>& state_h_output) override;
virtual void compute_mfcc(const std::vector<float>& audio_buffer,
std::vector<float>& mfcc_output) override;
};
#endif // TFMODELSTATE_H

View File

@ -39,4 +39,6 @@ LD_LIBRARY_PATH=${PY37_LDPATH}:$LD_LIBRARY_PATH pip install --verbose --only-bin
run_prod_inference_tests
run_prod_concurrent_stream_tests
virtualenv_deactivate "${pyver}" "${PYENV_NAME}"

View File

@ -419,6 +419,26 @@ run_all_inference_tests()
assert_correct_warning_upsampling "${phrase_pbmodel_withlm_mono_8k}"
}
run_prod_concurrent_stream_tests()
{
set +e
output=$(python ${TASKCLUSTER_TMP_DIR}/test_sources/concurrent_streams.py \
--model ${TASKCLUSTER_TMP_DIR}/${model_name_mmap} \
--alphabet ${TASKCLUSTER_TMP_DIR}/alphabet.txt \
--lm ${TASKCLUSTER_TMP_DIR}/lm.binary \
--trie ${TASKCLUSTER_TMP_DIR}/trie \
--audio1 ${TASKCLUSTER_TMP_DIR}/LDC93S1.wav \
--audio2 ${TASKCLUSTER_TMP_DIR}/new-home-in-the-stars-16k.wav 2>/dev/null)
status=$?
set -e
output1=$(echo ${output} | head -n 1)
output2=$(echo ${output} | tail -n 1)
assert_correct_ldc93s1_prodmodel "${output1}" "${status}"
assert_correct_inference "${output2}" "i must find a new home in the stars" "${status}"
}
run_prod_inference_tests()
{
set +e
@ -549,6 +569,7 @@ download_data()
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/alphabet.txt ${TASKCLUSTER_TMP_DIR}/alphabet.txt
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/smoke_test/vocab.pruned.lm ${TASKCLUSTER_TMP_DIR}/lm.binary
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/smoke_test/vocab.trie ${TASKCLUSTER_TMP_DIR}/trie
cp -R ${DS_ROOT_TASK}/DeepSpeech/ds/native_client/test ${TASKCLUSTER_TMP_DIR}/test_sources
}
download_material()

View File

@ -73,7 +73,6 @@ def create_flags():
f.DEFINE_string('export_dir', '', 'directory in which exported models are stored - if omitted, the model won\'t get exported')
f.DEFINE_boolean('remove_export', False, 'whether to remove old exported models')
f.DEFINE_boolean('export_tflite', False, 'export a graph ready for TF Lite engine')
f.DEFINE_boolean('use_seq_length', True, 'have sequence_length in the exported graph(will make tfcompile unhappy)')
f.DEFINE_integer('n_steps', 16, 'how many timesteps to process at once by the export graph, higher values mean more latency')
f.DEFINE_string('export_language', '', 'language the model was trained on e.g. "en" or "English". Gets embedded into exported model.')