Add a test for interleaved/concurrent streams with a single model instance

This commit is contained in:
Reuben Morais 2019-06-18 19:23:16 -03:00
parent ea1422d47b
commit f12ea5e958
4 changed files with 101 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,78 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import argparse
import numpy as np
import wave
from deepspeech import Model
# These constants control the beam search decoder
# Beam width used in the CTC decoder when building candidate transcriptions
BEAM_WIDTH = 500
# The alpha hyperparameter of the CTC decoder. Language Model weight
LM_ALPHA = 0.75
# The beta hyperparameter of the CTC decoder. Word insertion bonus.
LM_BETA = 1.85
# These constants are tied to the shape of the graph used (changing them changes
# the geometry of the first layer), so make sure you use the same constants that
# were used during training
# Number of MFCC features to use
N_FEATURES = 26
# Size of the context window used for producing timesteps in the input vector
N_CONTEXT = 9
def main():
parser = argparse.ArgumentParser(description='Running DeepSpeech inference.')
parser.add_argument('--model', required=True,
help='Path to the model (protocol buffer binary file)')
parser.add_argument('--alphabet', required=True,
help='Path to the configuration file specifying the alphabet used by the network')
parser.add_argument('--lm', nargs='?',
help='Path to the language model binary file')
parser.add_argument('--trie', nargs='?',
help='Path to the language model trie file created with native_client/generate_trie')
parser.add_argument('--audio1', required=True,
help='First audio file to use in interleaved streams')
parser.add_argument('--audio2', required=True,
help='Second audio file to use in interleaved streams')
args = parser.parse_args()
ds = Model(args.model, N_FEATURES, N_CONTEXT, args.alphabet, BEAM_WIDTH)
if args.lm and args.trie:
ds.enableDecoderWithLM(args.alphabet, args.lm, args.trie, LM_ALPHA, LM_BETA)
with wave.open(args.audio1, 'rb') as fin:
fs1 = fin.getframerate()
audio1 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
with wave.open(args.audio2, 'rb') as fin:
fs2 = fin.getframerate()
audio2 = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
stream1 = ds.setupStream(sample_rate=fs1)
stream2 = ds.setupStream(sample_rate=fs2)
splits1 = np.array_split(audio1, 10)
splits2 = np.array_split(audio2, 10)
for part1, part2 in zip(splits1, splits2):
ds.feedAudioContent(stream1, part1)
ds.feedAudioContent(stream2, part2)
print(ds.finishStream(stream1))
print(ds.finishStream(stream2))
if __name__ == '__main__':
main()

View File

@ -39,4 +39,6 @@ LD_LIBRARY_PATH=${PY37_LDPATH}:$LD_LIBRARY_PATH pip install --verbose --only-bin
run_prod_inference_tests
run_prod_concurrent_stream_tests
virtualenv_deactivate "${pyver}" "${PYENV_NAME}"

View File

@ -419,6 +419,26 @@ run_all_inference_tests()
assert_correct_warning_upsampling "${phrase_pbmodel_withlm_mono_8k}"
}
run_prod_concurrent_stream_tests()
{
set +e
output=$(python ${TASKCLUSTER_TMP_DIR}/test_sources/concurrent_streams.py \
--model ${TASKCLUSTER_TMP_DIR}/${model_name_mmap} \
--alphabet ${TASKCLUSTER_TMP_DIR}/alphabet.txt \
--lm ${TASKCLUSTER_TMP_DIR}/lm.binary \
--trie ${TASKCLUSTER_TMP_DIR}/trie \
--audio1 ${TASKCLUSTER_TMP_DIR}/LDC93S1.wav \
--audio2 ${TASKCLUSTER_TMP_DIR}/new-home-in-the-stars-16k.wav 2>/dev/null)
status=$?
set -e
output1=$(echo ${output} | head -n 1)
output2=$(echo ${output} | tail -n 1)
assert_correct_ldc93s1_prodmodel "${output1}" "${status}"
assert_correct_inference "${output2}" "i must find a new home in the stars" "${status}"
}
run_prod_inference_tests()
{
set +e
@ -540,6 +560,7 @@ download_data()
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/alphabet.txt ${TASKCLUSTER_TMP_DIR}/alphabet.txt
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/smoke_test/vocab.pruned.lm ${TASKCLUSTER_TMP_DIR}/lm.binary
cp ${DS_ROOT_TASK}/DeepSpeech/ds/data/smoke_test/vocab.trie ${TASKCLUSTER_TMP_DIR}/trie
cp -R ${DS_ROOT_TASK}/DeepSpeech/ds/native_client/test ${TASKCLUSTER_TMP_DIR}/test_sources
}
download_material()