Changes: - Updates to docs - Several changes for Python 3 compatibility - Added license headers Base CL: 108710566
18 KiB
Download and Setup
You can install TensorFlow either from our provided binary packages or from the github source.
Requirements
The TensorFlow Python API currently requires Python 2.7. We are adding support for Python 3.
The GPU version (Linux only) currently requires the Cuda Toolkit 7.0 and CUDNN 6.5 V2. Please see Cuda installation.
Overview
We support different ways to install TensorFlow:
- Pip install: Install TensorFlow on your machine, possibly upgrading previously installed Python packages. May impact existing Python programs on your machine.
- Virtualenv install: Install TensorFlow in its own directory, not impacting any existing Python programs on your machine.
- Docker install: Run TensorFlow in a Docker container isolated from all other programs on your machine.
If you are familiar with Pip, Virtualenv, or Docker, please feel free to adapt the instructions to your particular needs. The names of the pip and Docker images are listed in the corresponding installation sections.
If you encounter installation errors, see common problems for some solutions.
Pip Installation
Pip is a package management system used to install and manage software packages written in Python.
The packages that will be installed or upgraded during the pip install are listed in the REQUIRED_PACKAGES section of setup.py
Install pip if not already installed:
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev
# Mac OS X
$ sudo easy_install pip
Install TensorFlow:
# Ubuntu/Linux 64-bit, CPU only:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only:
$ sudo easy_install --upgrade six
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can now test your installation.
Virtualenv installation
Virtualenv is a tool to keep the dependencies required by different Python projects in separate places. The Virtualenv installation of TensorFlow will not override pre-existing version of the Python packages needed by TensorFlow.
With Virtualenv the installation is as follows:
- Install pip and Virtualenv.
- Create a Virtualenv environment.
- Activate the Virtualenv environment and install TensorFlow in it.
- After the install you will activate the Virtualenv environment each time you want to use TensorFlow.
Install pip and Virtualenv:
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev python-virtualenv
# Mac OS X
$ sudo easy_install pip
$ sudo pip install --upgrade virtualenv
Create a Virtualenv environment in the directory ~/tensorflow
:
$ virtualenv --system-site-packages ~/tensorflow
Activate the environment and use pip to install TensorFlow inside it:
$ source ~/tensorflow/bin/activate # If using bash
$ source ~/tensorflow/bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
# Ubuntu/Linux 64-bit, CPU only:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
With the Virtualenv environment activated, you can now test your installation.
# When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate
$ # Your prompt should change back
To use TensorFlow later you will have to activate the Virtualenv environment again:
$ source ~/tensorflow/bin/activate # If using bash.
$ source ~/tensorflow/bin/activate.csh # If using csh.
(tensorflow)$ # Your prompt should change.
# Run Python programs that use TensorFlow.
...
# When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate
Docker installation
Docker is a system to build self contained versions of a Linux operating system running on your machine. When you install and run TensorFlow via Docker it completely isolates the installation from pre-existing packages on your machine.
We provide 2 Docker images:
b.gcr.io/tensorflow/tensorflow
: TensorFlow CPU binary image.b.gcr.io/tensorflow/tensorflow-full
: CPU Binary image plus source code.
With Docker the installation is as follows:
- Install Docker on your machine.
- Launch a Docker container with the TensorFlow image. The image gets downloaded automatically on first launch.
See installing Docker for instructions on installing Docker on your machine.
Also create a Docker
group
to allow launching containers without sudo
.
After Docker is installed, launch a Docker container with the TensorFlow binary image as follows.
$ docker run -it b.gcr.io/tensorflow/tensorflow
Within the Docker container, you can now test your installation.
You can alternatively launch the TensorFlow source image, for example if you want to experiment directly with the source.
$ docker run -it b.gcr.io/tensorflow/tensorflow-full
Test the TensorFlow installation
(Optional, Linux) Enable GPU Support
If you installed the GPU version of TensorFlow, you must also install the Cuda Toolkit 7.0 and CUDNN 6.5 V2. Please see Cuda installation.
You also need to set the LD_LIBRARY_PATH
and CUDA_HOME
environment
variables. Consider adding the commands below to your ~/.bash_profile
. These
assume your CUDA installation is in /usr/local/cuda
:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda
Run TensorFlow from the Command Line
See common problems if some error happens.
Open a terminal and type the following:
$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print sess.run(hello)
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print sess.run(a + b)
42
>>>
Run a TensorFlow demo model
All TensorFlow packages, including the demo models, are installed in the Python library. The exact location of the Python library depends on your system, but is usually one of:
/usr/local/lib/python2.7/dist-packages/tensorflow
/usr/local/lib/python2.7/site-packages/tensorflow
You can find out the directory with the following command:
$ python -c 'import site; print "\n".join(site.getsitepackages())'
The simple demo model for classifying handwritten digits from the MNIST dataset
is in the sub-directory models/image/mnist/convolutional.py
. You can run it from the command
line as follows:
# Using 'python -m' to find the program in the python search path:
$ python -m tensorflow.models.image.mnist.convolutional
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
...etc...
# You can alternatively pass the path to the model program file to the python interpreter.
$ python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
...
Installing from sources
Clone the TensorFlow repository
$ git clone --recurse-submodules https://github.com/tensorflow/tensorflow
--recurse-submodules
is required to fetch the protobuf library that TensorFlow
depends on.
Installation for Linux
Install Bazel
Follow instructions here to install the dependencies for Bazel. Then download bazel version 0.1.1 using the installer for your system and run the installer as mentioned there:
$ chmod +x PATH_TO_INSTALL.SH
$ ./PATH_TO_INSTALL.SH --user
Remember to replace PATH_TO_INSTALL.SH
to point to the location where you
downloaded the installer.
Finally, follow the instructions in that script to place bazel into your binary path.
Install other dependencies
$ sudo apt-get install python-numpy swig python-dev
Optional: Install CUDA (GPUs on Linux)
In order to build or run TensorFlow with GPU support, both Cuda Toolkit 7.0 and CUDNN 6.5 V2 from NVIDIA need to be installed.
TensorFlow GPU support requires having a GPU card with NVidia Compute Capability >= 3.5. Supported cards include but are not limited to:
- NVidia Titan
- NVidia Titan X
- NVidia K20
- NVidia K40
Download and install Cuda Toolkit 7.0
https://developer.nvidia.com/cuda-toolkit-70
Install the toolkit into e.g. /usr/local/cuda
Download and install CUDNN Toolkit 6.5
https://developer.nvidia.com/rdp/cudnn-archive
Uncompress and copy the cudnn files into the toolkit directory. Assuming the
toolkit is installed in /usr/local/cuda
:
tar xvzf cudnn-6.5-linux-x64-v2.tgz
sudo cp cudnn-6.5-linux-x64-v2/cudnn.h /usr/local/cuda/include
sudo cp cudnn-6.5-linux-x64-v2/libcudnn* /usr/local/cuda/lib64
Configure TensorFlow's canonical view of Cuda libraries
From the root of your source tree, run:
$ ./configure
Do you wish to build TensorFlow with GPU support? [y/n] y
GPU support will be enabled for TensorFlow
Please specify the location where CUDA 7.0 toolkit is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
Please specify the location where CUDNN 6.5 V2 library is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished
This creates a canonical set of symbolic links to the Cuda libraries on your system. Every time you change the Cuda library paths you need to run this step again before you invoke the bazel build command.
Build your target with GPU support
From the root of your source tree, run:
$ bazel build -c opt --config=cuda //tensorflow/cc:tutorials_example_trainer
$ bazel-bin/tensorflow/cc/tutorials_example_trainer --use_gpu
# Lots of output. This tutorial iteratively calculates the major eigenvalue of
# a 2x2 matrix, on GPU. The last few lines look like this.
000009/000005 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
000006/000001 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
000009/000009 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
Note that "--config=cuda" is needed to enable the GPU support.
Enabling Cuda 3.0
TensorFlow officially supports Cuda devices with 3.5 and 5.2 compute capabilities. In order to enable earlier Cuda devices such as Grid K520, you need to target Cuda 3.0. This can be done through TensorFlow unofficial settings with "configure".
$ TF_UNOFFICIAL_SETTING=1 ./configure
# Same as the official settings above
WARNING: You are configuring unofficial settings in TensorFlow. Because some
external libraries are not backward compatible, these settings are largely
untested and unsupported.
Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases
your build time and binary size. [Default is: "3.5,5.2"]: 3.0
Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished
Known issues
-
Although it is possible to build both Cuda and non-Cuda configs under the same source tree, we recommend to run "bazel clean" when switching between these two configs in the same source tree.
-
You have to run configure before running bazel build. Otherwise, the build will fail with a clear error message. In the future, we might consider making this more conveninent by including the configure step in our build process, given necessary bazel new feature support.
Installation for Mac OS X
Mac needs the same set of dependencies as Linux, however installing those dependencies is different. Here is a set of useful links to help with installing the dependencies on Mac OS X :
Bazel
Look for installation instructions for Mac OS X on this page.
SWIG
Notes : You need to install PCRE and NOT PCRE2.
Numpy
Follow installation instructions here.
Create the pip package and install
$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
# To build with GPU support:
$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
# The name of the .whl file will depend on your platform.
$ pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
Train your first TensorFlow neural net model
Starting from the root of your source tree, run:
$ cd tensorflow/models/image/mnist
$ python convolutional.py
Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Initialized!
Epoch 0.00
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Epoch 0.12
Minibatch loss: 3.285, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 7.0%
...
...
Common Problems
GPU-related issues
If you encounter the following when trying to run a TensorFlow program:
ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory
Make sure you followed the the GPU installation instructions.
Pip installation issues
Can't find setup.py
If, during pip install
, you encounter an error like:
...
IOError: [Errno 2] No such file or directory: '/tmp/pip-o6Tpui-build/setup.py'
Solution: upgrade your version of pip
:
pip install --upgrade pip
This may require sudo
, depending on how pip
is installed.
SSLError: SSL_VERIFY_FAILED
If, during pip install from a URL, you encounter an error like:
...
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
Solution: Download the wheel manually via curl or wget, and pip install locally.
On Linux
If you encounter:
...
"__add__", "__radd__",
^
SyntaxError: invalid syntax
Solution: make sure you are using Python 2.7.
Mac OS X: ImportError: No module named copyreg
On Mac OS X, you may encounter the following when importing tensorflow.
>>> import tensorflow as tf
...
ImportError: No module named copyreg
Solution: TensorFlow depends on protobuf, which requires the Python package
six-1.10.0
. Apple's default Python installation only provides six-1.4.1
.
You can resolve the issue in one of the following ways:
- Upgrade the Python installation with the current version
six
:
$ sudo easy_install -U six
-
Install TensorFlow with a separate Python library:
- Using Virtualenv.
- Using Docker.
-
Install a separate copy of Python via Homebrew or MacPorts and re-install TensorFlow in that copy of Python.
Mac OS X: TypeError: __init__()
got an unexpected keyword argument 'syntax'
On Mac OS X, you may encounter the following when importing tensorflow.
>>> import tensorflow as tf
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/site-packages/tensorflow/__init__.py", line 4, in <module>
from tensorflow.python import *
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 13, in <module>
from tensorflow.core.framework.graph_pb2 import *
...
File "/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensor_shape_pb2.py", line 22, in <module>
serialized_pb=_b('\n,tensorflow/core/framework/tensor_shape.proto\x12\ntensorflow\"d\n\x10TensorShapeProto\x12-\n\x03\x64im\x18\x02 \x03(\x0b\x32 .tensorflow.TensorShapeProto.Dim\x1a!\n\x03\x44im\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\tb\x06proto3')
TypeError: __init__() got an unexpected keyword argument 'syntax'
This is due to a conflict between protobuf versions (we require protobuf 3.0.0). The best current solution is to make sure older versions of protobuf are not installed, such as:
$ pip install --upgrade protobuf