STT-tensorflow/tensorflow/compiler/tests/powersign_test.py
2018-07-07 21:21:42 -07:00

143 lines
4.9 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for PowerSign."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.contrib.opt.python.training import powersign
from tensorflow.contrib.opt.python.training import sign_decay
from tensorflow.python.framework import constant_op
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def py_linear_decay_fn(decay_steps):
def linear_decay(step):
step = min(step, decay_steps)
return float(decay_steps - step) / decay_steps
return linear_decay
def powersign_update_numpy(params,
g_t,
m,
lr,
base=math.e,
beta=0.9,
py_sign_decay_fn=None,
t=None):
m_t = beta * m + (1 - beta) * g_t
if py_sign_decay_fn is None:
sign_decayed = 1.0
else:
sign_decayed = py_sign_decay_fn(t-1)
multiplier = base ** (sign_decayed * np.sign(g_t) * np.sign(m_t))
params_t = params - lr * multiplier * g_t
return params_t, m_t
class PowerSignTest(xla_test.XLATestCase):
def _testDense(self,
learning_rate=0.1,
sign_decay_fn=None,
py_sign_decay_fn=None,
base=math.e,
beta=0.9):
for dtype in self.float_types:
with self.test_session(), self.test_scope():
# Initialize variables for numpy implementation.
m0, m1 = 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype)
var0 = resource_variable_ops.ResourceVariable(var0_np)
var1 = resource_variable_ops.ResourceVariable(var1_np)
global_step = resource_variable_ops.ResourceVariable(0, trainable=False)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = powersign.PowerSignOptimizer(
learning_rate=learning_rate,
base=base,
beta=beta,
sign_decay_fn=sign_decay_fn,
)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
global_step=global_step)
neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
global_step=global_step)
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], var0.eval())
self.assertAllClose([3.0, 4.0], var1.eval())
# Run 7 steps of powersign
# first 4 steps with positive gradient
# last 3 steps with negative gradient (sign(gm) should be -1)
for t in range(1, 8):
if t < 5:
update.run()
else:
neg_update.run()
var0_np, m0 = powersign_update_numpy(
var0_np,
grads0_np if t < 5 else -grads0_np,
m0,
learning_rate,
base=base,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
var1_np, m1 = powersign_update_numpy(
var1_np,
grads1_np if t < 5 else -grads1_np,
m1,
learning_rate,
base=base,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0.eval())
self.assertAllCloseAccordingToType(var1_np, var1.eval())
def testDense(self):
decay_steps = 10
sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps)
py_sign_decay_fn = py_linear_decay_fn(decay_steps)
self._testDense()
self._testDense(learning_rate=0.1, base=10.0, beta=0.8)
self._testDense(
sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn)
if __name__ == '__main__':
test.main()