[TF:XLA] Add implementation of ResourceApplyPowerSign and ResourceApplyAddSign.

PiperOrigin-RevId: 203547001
This commit is contained in:
A. Unique TensorFlower 2018-07-06 18:02:00 -07:00 committed by TensorFlower Gardener
parent 1caaea99e0
commit d7416d53ef
6 changed files with 423 additions and 4 deletions

View File

@ -111,6 +111,34 @@ tf_xla_py_test(
],
)
tf_xla_py_test(
name = "addsign_test",
size = "small",
srcs = ["addsign_test.py"],
deps = [
":xla_test",
"//tensorflow/contrib/opt:opt_py",
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework",
"//tensorflow/python:training",
],
)
tf_xla_py_test(
name = "powersign_test",
size = "small",
srcs = ["powersign_test.py"],
deps = [
":xla_test",
"//tensorflow/contrib/opt:opt_py",
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework",
"//tensorflow/python:training",
],
)
tf_xla_py_test(
name = "argminmax_test",
size = "small",

View File

@ -0,0 +1,145 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for AddSign."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.contrib.opt.python.training import addsign
from tensorflow.contrib.opt.python.training import sign_decay
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def py_linear_decay_fn(decay_steps):
def linear_decay(step):
step = min(step, decay_steps)
return float(decay_steps - step) / decay_steps
return linear_decay
def addsign_update_numpy(params,
g_t,
m,
lr,
alpha=1.0,
beta=0.9,
py_sign_decay_fn=None,
t=None):
m_t = beta * m + (1 - beta) * g_t
if py_sign_decay_fn is None:
sign_decayed = 1.0
else:
sign_decayed = py_sign_decay_fn(t-1)
multiplier = alpha + sign_decayed * np.sign(g_t) * np.sign(m_t)
params_t = params - lr * multiplier * g_t
return params_t, m_t
class AddSignTest(xla_test.XLATestCase):
def _testDense(self,
learning_rate=0.1,
sign_decay_fn=None,
py_sign_decay_fn=None,
alpha=1.0,
beta=0.9):
for dtype in self.float_types:
# TODO(b/111123982): remove once the bug is fixed.
if dtype == dtypes.float16:
continue
with self.test_session(), self.test_scope():
# Initialize variables for numpy implementation.
m0, m1 = 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype)
var0 = resource_variable_ops.ResourceVariable(var0_np)
var1 = resource_variable_ops.ResourceVariable(var1_np)
global_step = resource_variable_ops.ResourceVariable(0, trainable=False)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = addsign.AddSignOptimizer(
learning_rate=learning_rate,
alpha=alpha,
beta=beta,
sign_decay_fn=sign_decay_fn,
)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
global_step=global_step)
neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
global_step=global_step)
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], var0.eval())
self.assertAllClose([3.0, 4.0], var1.eval())
# Run 7 steps of AddSign
# first 4 steps with positive gradient
# last 3 steps with negative gradient (sign(gm) should be -1)
for t in range(1, 8):
if t < 5:
update.run()
else:
neg_update.run()
var0_np, m0 = addsign_update_numpy(
var0_np,
grads0_np if t < 5 else -grads0_np,
m0,
learning_rate,
alpha=alpha,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
var1_np, m1 = addsign_update_numpy(
var1_np,
grads1_np if t < 5 else -grads1_np,
m1,
learning_rate,
alpha=alpha,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0.eval())
self.assertAllCloseAccordingToType(var1_np, var1.eval())
def testDense(self):
decay_steps = 10
sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps)
py_sign_decay_fn = py_linear_decay_fn(decay_steps)
self._testDense()
self._testDense(learning_rate=0.01, alpha=0.1, beta=0.8)
self._testDense(
sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn)
if __name__ == '__main__':
test.main()

View File

@ -0,0 +1,142 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for PowerSign."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.contrib.opt.python.training import powersign
from tensorflow.contrib.opt.python.training import sign_decay
from tensorflow.python.framework import constant_op
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def py_linear_decay_fn(decay_steps):
def linear_decay(step):
step = min(step, decay_steps)
return float(decay_steps - step) / decay_steps
return linear_decay
def powersign_update_numpy(params,
g_t,
m,
lr,
base=math.e,
beta=0.9,
py_sign_decay_fn=None,
t=None):
m_t = beta * m + (1 - beta) * g_t
if py_sign_decay_fn is None:
sign_decayed = 1.0
else:
sign_decayed = py_sign_decay_fn(t-1)
multiplier = base ** (sign_decayed * np.sign(g_t) * np.sign(m_t))
params_t = params - lr * multiplier * g_t
return params_t, m_t
class PowerSignTest(xla_test.XLATestCase):
def _testDense(self,
learning_rate=0.1,
sign_decay_fn=None,
py_sign_decay_fn=None,
base=math.e,
beta=0.9):
for dtype in self.float_types:
with self.test_session(), self.test_scope():
# Initialize variables for numpy implementation.
m0, m1 = 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype)
var0 = resource_variable_ops.ResourceVariable(var0_np)
var1 = resource_variable_ops.ResourceVariable(var1_np)
global_step = resource_variable_ops.ResourceVariable(0, trainable=False)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
opt = powersign.PowerSignOptimizer(
learning_rate=learning_rate,
base=base,
beta=beta,
sign_decay_fn=sign_decay_fn,
)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
global_step=global_step)
neg_update = opt.apply_gradients(zip([-grads0, -grads1], [var0, var1]),
global_step=global_step)
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], var0.eval())
self.assertAllClose([3.0, 4.0], var1.eval())
# Run 7 steps of powersign
# first 4 steps with positive gradient
# last 3 steps with negative gradient (sign(gm) should be -1)
for t in range(1, 8):
if t < 5:
update.run()
else:
neg_update.run()
var0_np, m0 = powersign_update_numpy(
var0_np,
grads0_np if t < 5 else -grads0_np,
m0,
learning_rate,
base=base,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
var1_np, m1 = powersign_update_numpy(
var1_np,
grads1_np if t < 5 else -grads1_np,
m1,
learning_rate,
base=base,
beta=beta,
py_sign_decay_fn=py_sign_decay_fn,
t=t,
)
# Validate updated params
self.assertAllCloseAccordingToType(var0_np, var0.eval())
self.assertAllCloseAccordingToType(var1_np, var1.eval())
def testDense(self):
decay_steps = 10
sign_decay_fn = sign_decay.get_linear_decay_fn(decay_steps)
py_sign_decay_fn = py_linear_decay_fn(decay_steps)
self._testDense()
self._testDense(learning_rate=0.1, base=10.0, beta=0.8)
self._testDense(
sign_decay_fn=sign_decay_fn, py_sign_decay_fn=py_sign_decay_fn)
if __name__ == '__main__':
test.main()

View File

@ -640,5 +640,109 @@ class ResourceApplyAdadelta : public XlaOpKernel {
REGISTER_XLA_OP(Name("ResourceApplyAdadelta").TypeConstraint("T", kFloatTypes),
ResourceApplyAdadelta);
class ResourceApplySignBase : public XlaOpKernel {
public:
explicit ResourceApplySignBase(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("T", &dtype_));
}
void Compile(XlaOpKernelContext* ctx) override {
TensorShape var_shape, m_shape;
xla::XlaOp var, m;
OP_REQUIRES_OK(ctx, ctx->ReadVariableInput(0, dtype_, &var_shape, &var));
OP_REQUIRES_OK(ctx, ctx->ReadVariableInput(1, dtype_, &m_shape, &m));
OP_REQUIRES(ctx, var_shape.IsSameSize(m_shape),
errors::InvalidArgument("var and m do not have the same shape",
var_shape.DebugString(), " ",
m_shape.DebugString()));
TensorShape grad_shape = ctx->InputShape(6);
OP_REQUIRES(ctx, var_shape.IsSameSize(grad_shape),
errors::InvalidArgument(
"var and grad do not have the same shape",
var_shape.DebugString(), " ", grad_shape.DebugString()));
CheckScalarParams(ctx);
xla::XlaOp lr = ctx->Input(2);
xla::XlaOp alpha = ctx->Input(3);
xla::XlaOp sign_decay = ctx->Input(4);
xla::XlaOp beta = ctx->Input(5);
xla::XlaOp grad = ctx->Input(6);
m = m * beta + grad * (xla::ScalarLike(beta, 1.0) - beta);
xla::XlaOp decay = xla::Sign(grad) * xla::Sign(m) * sign_decay;
xla::XlaOp grad_scale = ComputeGradientScale(alpha, decay);
var = var - lr * grad_scale * grad;
OP_REQUIRES_OK(ctx, ctx->AssignVariable(0, dtype_, var));
OP_REQUIRES_OK(ctx, ctx->AssignVariable(1, dtype_, m));
}
virtual void CheckScalarParams(XlaOpKernelContext* ctx) {
TensorShape lr_shape = ctx->InputShape(2);
TensorShape sign_decay_shape = ctx->InputShape(4);
TensorShape beta_shape = ctx->InputShape(5);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(lr_shape),
errors::InvalidArgument("lr is not a scalar: ",
lr_shape.DebugString()));
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(sign_decay_shape),
errors::InvalidArgument("sign_decay is not a scalar: ",
sign_decay_shape.DebugString()));
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(beta_shape),
errors::InvalidArgument("beta is not a scalar: ",
beta_shape.DebugString()));
}
virtual xla::XlaOp ComputeGradientScale(xla::XlaOp alpha,
xla::XlaOp decay) = 0;
private:
DataType dtype_;
};
class ResourceApplyAddSign : public ResourceApplySignBase {
public:
explicit ResourceApplyAddSign(OpKernelConstruction* ctx)
: ResourceApplySignBase(ctx) {}
void CheckScalarParams(XlaOpKernelContext* ctx) override {
ResourceApplySignBase::CheckScalarParams(ctx);
TensorShape alpha_shape = ctx->InputShape(3);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(alpha_shape),
errors::InvalidArgument("alpha is not a scalar: ",
alpha_shape.DebugString()));
}
xla::XlaOp ComputeGradientScale(xla::XlaOp alpha, xla::XlaOp decay) override {
return alpha + decay;
}
};
// TODO(b/111123982): Use kFloatTypes once the bug is fixed.
REGISTER_XLA_OP(Name("ResourceApplyAddSign")
.TypeConstraint("T", {DT_FLOAT, DT_DOUBLE, DT_BFLOAT16}),
ResourceApplyAddSign);
class ResourceApplyPowerSign : public ResourceApplySignBase {
public:
explicit ResourceApplyPowerSign(OpKernelConstruction* ctx)
: ResourceApplySignBase(ctx) {}
void CheckScalarParams(XlaOpKernelContext* ctx) override {
ResourceApplySignBase::CheckScalarParams(ctx);
TensorShape logbase_shape = ctx->InputShape(3);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(logbase_shape),
errors::InvalidArgument("logbase is not a scalar: ",
logbase_shape.DebugString()));
}
xla::XlaOp ComputeGradientScale(xla::XlaOp alpha, xla::XlaOp decay) override {
return xla::Exp(alpha * decay);
}
};
REGISTER_XLA_OP(Name("ResourceApplyPowerSign").TypeConstraint("T", kFloatTypes),
ResourceApplyPowerSign);
} // namespace
} // namespace tensorflow

View File

@ -214,7 +214,7 @@ class AddSignTest(test.TestCase):
# Run 7 steps of AddSign
# first 4 steps with positive gradient
# last 3 steps with negative gradient (sign(gm) should be -1)
for t in range(1, 4):
for t in range(1, 8):
if t < 5:
update.run()
else:
@ -222,7 +222,7 @@ class AddSignTest(test.TestCase):
var0_np, m0 = addsign_update_numpy(
var0_np,
grads0_np,
grads0_np if t < 5 else -grads0_np,
m0,
learning_rate,
alpha=alpha,
@ -232,7 +232,7 @@ class AddSignTest(test.TestCase):
)
var1_np, m1 = addsign_update_numpy(
var1_np,
grads1_np,
grads1_np if t < 5 else -grads1_np,
m1,
learning_rate,
alpha=alpha,

View File

@ -216,7 +216,7 @@ class PowerSignTest(test.TestCase):
self.assertAllClose([1.0, 2.0], var0.eval())
self.assertAllClose([3.0, 4.0], var1.eval())
# Run 3 steps of powersign
# Run 7 steps of powersign
# first 4 steps with positive gradient
# last 3 steps with negative gradient (sign(gm) should be -1)
for t in range(1, 8):