STT-tensorflow/tensorflow/tools/api/golden/v1/tensorflow.keras.callbacks.-progbar-logger.pbtxt
A. Unique TensorFlower abe1c5f6c0 Add Callbacks hooks for evaluate and predict.
Adds Callback methods that can be used during validation, evaluation, and
prediction.

PiperOrigin-RevId: 225611013
2018-12-14 15:13:34 -08:00

83 lines
3.0 KiB
Plaintext

path: "tensorflow.keras.callbacks.ProgbarLogger"
tf_class {
is_instance: "<class \'tensorflow.python.keras.callbacks.ProgbarLogger\'>"
is_instance: "<class \'tensorflow.python.keras.callbacks.Callback\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'count_mode\', \'stateful_metrics\'], varargs=None, keywords=None, defaults=[\'samples\', \'None\'], "
}
member_method {
name: "on_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "set_model"
argspec: "args=[\'self\', \'model\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "set_params"
argspec: "args=[\'self\', \'params\'], varargs=None, keywords=None, defaults=None"
}
}