Add Callbacks hooks for evaluate and predict.

Adds Callback methods that can be used during validation, evaluation, and
prediction.

PiperOrigin-RevId: 225611013
This commit is contained in:
A. Unique TensorFlower 2018-12-14 15:07:08 -08:00 committed by TensorFlower Gardener
parent 62e61f434b
commit abe1c5f6c0
41 changed files with 1365 additions and 136 deletions

View File

@ -45,13 +45,17 @@ from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training import saver
from tensorflow.python.util.tf_export import tf_export
try:
import requests
except ImportError:
requests = None
_TRAIN = 'train'
_TEST = 'test'
_PREDICT = 'predict'
# pylint: disable=protected-access
def configure_callbacks(callbacks,
model,
@ -62,7 +66,7 @@ def configure_callbacks(callbacks,
samples=None,
verbose=1,
count_mode='steps',
mode='train'):
mode=_TRAIN):
"""Configures callbacks for use in various training loops.
Arguments:
@ -89,7 +93,7 @@ def configure_callbacks(callbacks,
callbacks = []
# Add additional callbacks during training.
if mode == 'train':
if mode == _TRAIN:
model.history = History()
stateful_metric_names = None
if hasattr(model, 'metrics_names'):
@ -109,7 +113,7 @@ def configure_callbacks(callbacks,
callback_metrics = []
# When we have deferred build scenario with iterator input, we will compile
# when we standardize first batch of data.
if mode != 'predict' and hasattr(model, 'metrics_names'):
if mode != _PREDICT and hasattr(model, 'metrics_names'):
callback_metrics = copy.copy(model.metrics_names)
if do_validation:
callback_metrics += ['val_' + n for n in model.metrics_names]
@ -142,6 +146,17 @@ def _is_generator_like(data):
data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator)))
def make_logs(model, logs, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
if mode in {_TRAIN, _TEST}:
if hasattr(model, 'metrics_names'):
for label, output in zip(model.metrics_names, outputs):
logs[prefix + label] = output
else:
logs['outputs'] = outputs
return logs
class CallbackList(object):
"""Container abstracting a list of callbacks.
@ -179,10 +194,6 @@ class CallbackList(object):
def _call_batch_hook(self, mode, hook, batch, logs=None):
"""Helper function for all batch_{begin | end} methods."""
# TODO(omalleyt): add batch hooks for test/predict.
if mode != 'train':
return
hook_name = 'on_{mode}_batch_{hook}'.format(mode=mode, hook=hook)
if hook == 'begin':
self._t_enter_batch = time.time()
@ -207,87 +218,175 @@ class CallbackList(object):
def _call_begin_hook(self, mode):
"""Helper function for on_{train|test|predict}_begin methods."""
# TODO(omalleyt): add test/predict methods.
if mode == 'train':
if mode == _TRAIN:
self.on_train_begin()
elif mode == _TEST:
self.on_test_begin()
else:
self.on_predict_begin()
def _call_end_hook(self, mode):
"""Helper function for on_{train|test|predict}_end methods."""
# TODO(omalleyt): add test/predict methods.
if mode == 'train':
if mode == _TRAIN:
self.on_train_end()
elif mode == _TEST:
self.on_test_end()
else:
self.on_predict_end()
def on_batch_begin(self, batch, logs=None):
self._call_batch_hook('train', 'begin', batch, logs=logs)
self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
def on_batch_end(self, batch, logs=None):
self._call_batch_hook('train', 'end', batch, logs=logs)
self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
def on_epoch_begin(self, epoch, logs=None, mode='train'):
"""Called at the start of an epoch.
"""Calls the `on_epoch_begin` methods of its callbacks.
Arguments:
epoch: integer, index of epoch.
logs: dictionary of logs.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
mode: One of 'train'/'test'/'predict'
"""
if mode == 'train':
if mode == _TRAIN:
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_begin(epoch, logs)
self._reset_batch_timing()
def on_epoch_end(self, epoch, logs=None, mode='train'):
"""Called at the end of an epoch.
"""Calls the `on_epoch_end` methods of its callbacks.
Arguments:
epoch: integer, index of epoch.
logs: dictionary of logs.
logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
mode: One of 'train'/'test'/'predict'
"""
if mode == 'train':
if mode == _TRAIN:
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_end(epoch, logs)
def on_train_batch_begin(self, batch, logs=None):
"""Called at the beginning of a training batch in `fit` methods.
"""Calls the `on_train_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dictionary of logs.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook('train', 'begin', batch, logs=logs)
self._call_batch_hook(_TRAIN, 'begin', batch, logs=logs)
def on_train_batch_end(self, batch, logs=None):
"""Called at the end of a training batch in `fit` methods.
"""Calls the `on_train_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dictionary of logs.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook('train', 'end', batch, logs=logs)
self._call_batch_hook(_TRAIN, 'end', batch, logs=logs)
def on_train_begin(self, logs=None):
"""Called at the beginning of training.
def on_test_batch_begin(self, batch, logs=None):
"""Calls the `on_test_batch_begin` methods of its callbacks.
Arguments:
logs: dictionary of logs.
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(_TEST, 'begin', batch, logs=logs)
def on_test_batch_end(self, batch, logs=None):
"""Calls the `on_test_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(_TEST, 'end', batch, logs=logs)
def on_predict_batch_begin(self, batch, logs=None):
"""Calls the `on_predict_batch_begin` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
self._call_batch_hook(_PREDICT, 'begin', batch, logs=logs)
def on_predict_batch_end(self, batch, logs=None):
"""Calls the `on_predict_batch_end` methods of its callbacks.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
self._call_batch_hook(_PREDICT, 'end', batch, logs=logs)
def on_train_begin(self, logs=None):
"""Calls the `on_train_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_begin(logs)
def on_train_end(self, logs=None):
"""Called at the end of training.
"""Calls the `on_train_end` methods of its callbacks.
Arguments:
logs: dictionary of logs.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_end(logs)
def on_test_begin(self, logs=None):
"""Calls the `on_test_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_begin(logs)
def on_test_end(self, logs=None):
"""Calls the `on_test_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_test_end(logs)
def on_predict_begin(self, logs=None):
"""Calls the 'on_predict_begin` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_begin(logs)
def on_predict_end(self, logs=None):
"""Calls the `on_predict_end` methods of its callbacks.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
for callback in self.callbacks:
callback.on_predict_end(logs)
def __iter__(self):
return iter(self.callbacks)
@ -330,31 +429,169 @@ class Callback(object):
def set_model(self, model):
self.model = model
def on_epoch_begin(self, epoch, logs=None):
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None):
pass
"""A backwards compatibility alias for `on_train_batch_begin`."""
def on_batch_end(self, batch, logs=None):
pass
"""A backwards compatibility alias for `on_train_batch_end`."""
def on_epoch_begin(self, epoch, logs=None, mode='train'):
"""Called at the start of an epoch.
Subclasses should override for any actions to run.
Arguments:
epoch: integer, index of epoch.
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
mode: One of 'train'/'test'/'predict'
"""
def on_epoch_end(self, epoch, logs=None, mode='train'):
"""Called at the end of an epoch.
Subclasses should override for any actions to run.
Arguments:
epoch: integer, index of epoch.
logs: dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
mode: One of 'train'/'test'/'predict'
"""
def on_train_batch_begin(self, batch, logs=None):
# For backwards compatibility
"""Called at the beginning of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
# For backwards compatibility.
self.on_batch_begin(batch, logs=logs)
def on_train_batch_end(self, batch, logs=None):
# For backwards compatibility
"""Called at the end of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
# For backwards compatibility.
self.on_batch_end(batch, logs=logs)
def on_test_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `evaluate` methods.
Also called at the beginning of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_test_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `evaluate` methods.
Also called at the end of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_predict_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
def on_predict_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dict. Metric results for this batch.
"""
def on_train_begin(self, logs=None):
pass
"""Called at the beginning of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_train_end(self, logs=None):
pass
"""Called at the end of training.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_begin(self, logs=None):
"""Called at the beginning of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_test_end(self, logs=None):
"""Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_begin(self, logs=None):
"""Called at the beginning of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def on_predict_end(self, logs=None):
"""Called at the end of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@tf_export('keras.callbacks.BaseLogger')

View File

@ -18,6 +18,7 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import csv
import os
import re
@ -33,6 +34,7 @@ from tensorflow.python import keras
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
@ -57,6 +59,142 @@ NUM_HIDDEN = 5
BATCH_SIZE = 5
class Counter(keras.callbacks.Callback):
"""Counts the number of times each callback method was run.
Attributes:
method_counts: dict. Contains the counts of time each callback method was
run.
"""
def __init__(self):
self.method_counts = collections.defaultdict(int)
methods_to_count = [
'on_batch_begin', 'on_batch_end', 'on_epoch_begin', 'on_epoch_end',
'on_predict_batch_begin', 'on_predict_batch_end', 'on_predict_begin',
'on_predict_end', 'on_test_batch_begin', 'on_test_batch_end',
'on_test_begin', 'on_test_end', 'on_train_batch_begin',
'on_train_batch_end', 'on_train_begin', 'on_train_end'
]
for method_name in methods_to_count:
setattr(self, method_name,
self.wrap_with_counts(method_name, getattr(self, method_name)))
def wrap_with_counts(self, method_name, method):
def _call_and_count(*args, **kwargs):
self.method_counts[method_name] += 1
return method(*args, **kwargs)
return _call_and_count
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes
class CallbackCountsTest(keras_parameterized.TestCase):
def _check_counts(self, counter, expected_counts):
"""Checks that the counts registered by `counter` are those expected."""
for method_name, expected_count in expected_counts.items():
self.assertEqual(
counter.method_counts[method_name],
expected_count,
msg='For method {}: expected {}, got: {}'.format(
method_name, expected_count, counter.method_counts[method_name]))
def _get_model(self):
layers = [
keras.layers.Dense(10, activation='relu'),
keras.layers.Dense(1, activation='sigmoid')
]
model = testing_utils.get_model_from_layers(layers, input_shape=(10,))
model.compile(
adam.AdamOptimizer(0.001),
'binary_crossentropy',
run_eagerly=testing_utils.should_run_eagerly())
return model
def test_callback_hooks_are_called_in_fit(self):
x, y = np.ones((10, 10)), np.ones((10, 1))
val_x, val_y = np.ones((4, 10)), np.ones((4, 1))
model = self._get_model()
counter = Counter()
model.fit(
x,
y,
validation_data=(val_x, val_y),
batch_size=2,
epochs=5,
callbacks=[counter])
self._check_counts(
counter, {
'on_batch_begin': 25,
'on_batch_end': 25,
'on_epoch_begin': 5,
'on_epoch_end': 5,
'on_predict_batch_begin': 0,
'on_predict_batch_end': 0,
'on_predict_begin': 0,
'on_predict_end': 0,
'on_test_batch_begin': 10,
'on_test_batch_end': 10,
'on_test_begin': 5,
'on_test_end': 5,
'on_train_batch_begin': 25,
'on_train_batch_end': 25,
'on_train_begin': 1,
'on_train_end': 1
})
def test_callback_hooks_are_called_in_evaluate(self):
x, y = np.ones((10, 10)), np.ones((10, 1))
model = self._get_model()
counter = Counter()
model.evaluate(x, y, batch_size=2, callbacks=[counter])
self._check_counts(
counter, {
'on_test_batch_begin': 5,
'on_test_batch_end': 5,
'on_test_begin': 1,
'on_test_end': 1
})
def test_callback_hooks_are_called_in_predict(self):
x = np.ones((10, 10))
model = self._get_model()
counter = Counter()
model.predict(x, batch_size=2, callbacks=[counter])
self._check_counts(
counter, {
'on_predict_batch_begin': 5,
'on_predict_batch_end': 5,
'on_predict_begin': 1,
'on_predict_end': 1
})
def test_callback_list_methods(self):
counter = Counter()
callback_list = keras.callbacks.CallbackList([counter])
batch = 0
callback_list.on_test_batch_begin(batch)
callback_list.on_test_batch_end(batch)
callback_list.on_predict_batch_begin(batch)
callback_list.on_predict_batch_end(batch)
self._check_counts(
counter, {
'on_test_batch_begin': 1,
'on_test_batch_end': 1,
'on_predict_batch_begin': 1,
'on_predict_batch_end': 1
})
class KerasCallbacksTest(test.TestCase):
def test_ModelCheckpoint(self):

View File

@ -893,6 +893,7 @@ class Model(Network):
verbose=1,
sample_weight=None,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False):
@ -943,6 +944,9 @@ class Model(Network):
Total number of steps (batches of samples)
before declaring the evaluation round finished.
Ignored with the default value of `None`.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during evaluation.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
input only. Maximum size for the generator queue.
If unspecified, `max_queue_size` will default to 10.
@ -1002,7 +1006,8 @@ class Model(Network):
steps=steps,
batch_size=batch_size,
verbose=verbose,
workers=0)
workers=0,
callbacks=callbacks)
elif distributed_training_utils.is_tpu_strategy(
self._distribution_strategy):
return training_distributed.experimental_test_loop(
@ -1015,13 +1020,15 @@ class Model(Network):
sample_weights=sample_weights,
batch_size=batch_size,
verbose=verbose,
steps=steps)
steps=steps,
callbacks=callbacks)
def predict(self,
x,
batch_size=None,
verbose=0,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False):
@ -1048,6 +1055,9 @@ class Model(Network):
steps: Total number of steps (batches of samples)
before declaring the prediction round finished.
Ignored with the default value of `None`.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during prediction.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
input only. Maximum size for the generator queue.
If unspecified, `max_queue_size` will default to 10.
@ -1110,14 +1120,20 @@ class Model(Network):
steps=steps,
batch_size=batch_size,
verbose=verbose,
workers=0)
workers=0,
callbacks=callbacks)
elif distributed_training_utils.is_tpu_strategy(
self._distribution_strategy):
return training_distributed.experimental_predict_loop(
self, x, verbose=verbose, steps=steps)
else:
return training_arrays.predict_loop(
self, x, batch_size=batch_size, verbose=verbose, steps=steps)
self,
x,
batch_size=batch_size,
verbose=verbose,
steps=steps,
callbacks=callbacks)
def reset_metrics(self):
"""Resets the state of metrics."""
@ -1440,6 +1456,7 @@ class Model(Network):
def evaluate_generator(self,
generator,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
@ -1459,6 +1476,9 @@ class Model(Network):
to yield from `generator` before stopping.
Optional for `Sequence`: if unspecified, will use
the `len(generator)` as a number of steps.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during evaluation.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: maximum size for the generator queue
workers: Integer. Maximum number of processes to spin up
when using process-based threading.
@ -1494,11 +1514,13 @@ class Model(Network):
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
verbose=verbose)
verbose=verbose,
callbacks=callbacks)
def predict_generator(self,
generator,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
@ -1516,6 +1538,9 @@ class Model(Network):
to yield from `generator` before stopping.
Optional for `Sequence`: if unspecified, will use
the `len(generator)` as a number of steps.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during prediction.
See [callbacks](/api_docs/python/tf/keras/callbacks).
max_queue_size: Maximum size for the generator queue.
workers: Integer. Maximum number of processes to spin up
when using process-based threading.
@ -1545,7 +1570,8 @@ class Model(Network):
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
verbose=verbose)
verbose=verbose,
callbacks=callbacks)
def _get_callback_model(self):
"""Returns the Callback Model for this Model."""

View File

@ -285,7 +285,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs)
# Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
progbar.on_batch_end(step, batch_logs)
@ -336,7 +336,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs, batch_start, batch_end)
# Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs)
progbar.on_batch_end(batch_index, batch_logs)
@ -345,7 +345,7 @@ def model_iteration(model,
aggregator.finalize()
results = aggregator.results
epoch_logs.update(training_utils.make_logs(model, results, mode))
epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
if len(results) == 1:
results = results[0]
@ -364,11 +364,14 @@ def model_iteration(model,
validation_in_fit=True)
if not isinstance(val_results, list):
val_results = [val_results]
epoch_logs.update(
training_utils.make_logs(model, val_results, mode, prefix='val_'))
epoch_logs = cbks.make_logs(
model, epoch_logs, val_results, mode, prefix='val_')
if mode == 'train':
# Epochs only apply to `fit`.
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks._call_end_hook(mode)
if model._distribution_strategy:

View File

@ -198,7 +198,7 @@ def model_iteration(model,
aggregator.aggregate(batch_outs)
# Callbacks batch end.
batch_logs.update(training_utils.make_logs(model, batch_outs, mode))
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
progbar.on_batch_end(step, batch_logs)
@ -207,7 +207,7 @@ def model_iteration(model,
aggregator.finalize()
results = aggregator.results
epoch_logs.update(training_utils.make_logs(model, results, mode))
epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
if len(results) == 1:
results = results[0]
@ -222,15 +222,20 @@ def model_iteration(model,
workers=workers,
use_multiprocessing=use_multiprocessing,
max_queue_size=max_queue_size,
callbacks=callbacks,
verbose=0,
mode='test')
if not isinstance(val_results, list):
val_results = [val_results]
epoch_logs.update(
training_utils.make_logs(model, val_results, mode, prefix='val_'))
epoch_logs = cbks.make_logs(
model, epoch_logs, val_results, mode, prefix='val_')
if mode == 'train':
# Epochs only apply to `fit`.
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks.on_epoch_end(epoch, epoch_logs, mode=mode)
progbar.on_epoch_end(epoch, epoch_logs)
callbacks._call_end_hook(mode)
if enqueuer is not None:

View File

@ -136,18 +136,6 @@ class OutputsAggregator(Aggregator):
self.results = [np.concatenate(result, axis=0) for result in self.results]
def make_logs(model, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
logs = {}
# TODO(omalleyt): handle outputs in prediction when Callback
# hooks are ready.
if mode in ['train', 'test']:
if hasattr(model, 'metrics_names'):
for label, output in zip(model.metrics_names, outputs):
logs[prefix + label] = output
return logs
def get_progbar(model, count_mode):
"""Get Progbar."""
stateful_metric_names = None

View File

@ -167,11 +167,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -235,11 +235,11 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -244,7 +244,7 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -16,11 +16,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -21,12 +21,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -21,12 +21,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -167,11 +167,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -235,11 +235,11 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -244,7 +244,7 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -167,11 +167,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -235,11 +235,11 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -244,7 +244,7 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -16,11 +16,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -21,12 +21,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -21,12 +21,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,12 +17,44 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -23,6 +23,38 @@ tf_class {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "

View File

@ -17,11 +17,43 @@ tf_class {
}
member_method {
name: "on_epoch_begin"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_epoch_end"
argspec: "args=[\'self\', \'epoch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
argspec: "args=[\'self\', \'epoch\', \'logs\', \'mode\'], varargs=None, keywords=None, defaults=[\'None\', \'train\'], "
}
member_method {
name: "on_predict_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_predict_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_begin"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_batch_end"
argspec: "args=[\'self\', \'batch\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_begin"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_test_end"
argspec: "args=[\'self\', \'logs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "on_train_batch_begin"

View File

@ -172,11 +172,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -240,11 +240,11 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -167,11 +167,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -235,11 +235,11 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"

View File

@ -172,11 +172,11 @@ tf_class {
}
member_method {
name: "evaluate"
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "evaluate_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "fit"
@ -244,7 +244,7 @@ tf_class {
}
member_method {
name: "predict"
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'10\', \'1\', \'False\'], "
argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], "
}
member_method {
name: "predict_classes"
@ -252,7 +252,7 @@ tf_class {
}
member_method {
name: "predict_generator"
argspec: "args=[\'self\', \'generator\', \'steps\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'10\', \'1\', \'False\', \'0\'], "
argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], "
}
member_method {
name: "predict_on_batch"