STT-tensorflow/tensorflow/python/grappler/arithmetic_optimizer_test.py
A. Unique TensorFlower 6e279f39dd Improve shape inference in TF 2.0, by propagating input shapes to functions.
This significantly improves the ability of Grappler to optimize tf.function bodies.

Fix a bug in ShapeOrHandleShape in training_ops.cc: If a resource argument does not have the handle_shapes available, we should return UnknownShape, rather than the shape of the argument itself, which is just a scalar resource handle.

PiperOrigin-RevId: 291991651
Change-Id: Iae8f3c5c5cf75742f0f2ce8f99cef2ae1ece5648
2020-01-28 12:39:56 -08:00

51 lines
1.7 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Grappler Arithmetic Optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
class ArithmeticOptimizerTest(test.TestCase):
# See b/146524878.
def testFunctionArgShapeInference(self):
@def_function.function
def f(x, y):
return math_ops.matmul(
x, array_ops.reshape(array_ops.transpose(y), [384, 1536]))
with context.eager_mode():
x = array_ops.ones((1, 384))
y = array_ops.ones((1536, 384))
with context.collect_graphs(optimized=True) as graphs:
f(x, y).numpy()
self.assertLen(graphs, 1)
self.assertLen(graphs[0].node, 4)
self.assertEqual(graphs[0].node[2].name,
'ArithmeticOptimizer/FoldTransposeIntoMatMul_MatMul')
if __name__ == '__main__':
test.main()