Improve shape inference in TF 2.0, by propagating input shapes to functions.

This significantly improves the ability of Grappler to optimize tf.function bodies.

Fix a bug in ShapeOrHandleShape in training_ops.cc: If a resource argument does not have the handle_shapes available, we should return UnknownShape, rather than the shape of the argument itself, which is just a scalar resource handle.

PiperOrigin-RevId: 291991651
Change-Id: Iae8f3c5c5cf75742f0f2ce8f99cef2ae1ece5648
This commit is contained in:
A. Unique TensorFlower 2020-01-28 12:36:33 -08:00 committed by TensorFlower Gardener
parent 5845168ce3
commit 6e279f39dd
6 changed files with 457 additions and 405 deletions

View File

@ -441,6 +441,12 @@ Status GraphToFunctionDef(const Graph& fn_body, const string& fn_name,
// _Arg/Placeholder nodes.
if (absl::StartsWith(attr.first, "_")) {
arg_attrs.mutable_attr()->insert(attr);
} else if (attr.first == "shape") {
// Preserve known shapes by moving them to the _output_shapes list.
// The _Arg shape function knows how to extract them from there.
AttrValue value;
*(value.mutable_list()->add_shape()) = attr.second.shape();
arg_attrs.mutable_attr()->insert({"_output_shapes", value});
}
if (attr.first == "_resource_arg_unique_id") {
resource_arg_unique_id = attr.second.i();

View File

@ -800,7 +800,7 @@ Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
VLOG(1) << "Optimized " << optimized_funcs.size()
<< " functions: " << absl::StrJoin(optimized_funcs, ", ");
VLOG(3) << "Optimized graph =\n" << optimized_graph->DebugString();
if (VLOG_IS_ON(1)) {
DumpGraphDefToFile(
strings::StrCat("after_MetaOptimizer_",

File diff suppressed because it is too large Load Diff

View File

@ -7440,6 +7440,26 @@ cuda_py_test(
],
)
cuda_py_test(
name = "arithmetic_optimizer_test",
size = "small",
srcs = [
"grappler/arithmetic_optimizer_test.py",
],
python_version = "PY3",
tags = [
"grappler",
],
deps = [
":array_ops",
":client_testlib",
":framework_for_generated_wrappers",
":math_ops",
"//tensorflow/core:protos_all_py",
"//third_party/py/numpy",
],
)
# TODO(b/131764887) Remove once LayoutOptimizer is swapped out with GenericLayoutOptimizer.
#
# cuda_py_test(

View File

@ -175,7 +175,9 @@ def function_def_to_graph_def(fdef, input_shapes=None):
for k in arg_attrs:
# Only copy internal attributes. Normal attributes for nodes cannot be
# applied to these Placeholder nodes.
if k.startswith("_"):
if k == "_output_shapes":
node_def.attr["shape"].shape.CopyFrom(arg_attrs[k].list.shape[0])
elif k.startswith("_"):
node_def.attr[k].CopyFrom(arg_attrs[k])
# 2. Copy all body NodeDefs to the GraphDef.

View File

@ -0,0 +1,50 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Grappler Arithmetic Optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
class ArithmeticOptimizerTest(test.TestCase):
# See b/146524878.
def testFunctionArgShapeInference(self):
@def_function.function
def f(x, y):
return math_ops.matmul(
x, array_ops.reshape(array_ops.transpose(y), [384, 1536]))
with context.eager_mode():
x = array_ops.ones((1, 384))
y = array_ops.ones((1536, 384))
with context.collect_graphs(optimized=True) as graphs:
f(x, y).numpy()
self.assertLen(graphs, 1)
self.assertLen(graphs[0].node, 4)
self.assertEqual(graphs[0].node[2].name,
'ArithmeticOptimizer/FoldTransposeIntoMatMul_MatMul')
if __name__ == '__main__':
test.main()