A. Unique TensorFlower 365468d98c Adds the TFLite version string to the Swift library.
PiperOrigin-RevId: 248755089
2019-05-17 11:29:21 -07:00

81 lines
2.1 KiB
Markdown

# TensorFlow Lite for Swift
[TensorFlow Lite](https://www.tensorflow.org/lite/) is TensorFlow's lightweight
solution for Swift developers. It enables low-latency inference of on-device
machine learning models with a small binary size and fast performance supporting
hardware acceleration.
## Build TensorFlow with iOS support
To build the Swift TensorFlow Lite library on Apple platforms,
[install from source](https://www.tensorflow.org/install/source#setup_for_linux_and_macos)
or [clone the GitHub repo](https://github.com/tensorflow/tensorflow).
Then, configure TensorFlow by navigating to the root directory and executing the
`configure.py` script:
```shell
python configure.py
```
Follow the prompts and when asked to build TensorFlow with iOS support, enter `y`.
### CocoaPods developers
Add the TensorFlow Lite pod to your `Podfile`:
```ruby
pod 'TensorFlowLiteSwift'
```
Then, run `pod install`.
In your Swift files, import the module:
```swift
import TensorFlowLite
```
### Bazel developers
In your `BUILD` file, add the `TensorFlowLite` dependency to your target:
```python
swift_library(
deps = [
"//tensorflow/lite/experimental/swift:TensorFlowLite",
],
)
```
In your Swift files, import the module:
```swift
import TensorFlowLite
```
Build the `TensorFlowLite` Swift library target:
```shell
bazel build tensorflow/lite/experimental/swift:TensorFlowLite
```
Build the `Tests` target:
```shell
bazel test tensorflow/lite/experimental/swift:Tests --swiftcopt=-enable-testing
```
Note: `--swiftcopt=-enable-testing` is required for optimized builds (`-c opt`).
#### Generate the Xcode project using Tulsi
Open the `//tensorflow/lite/experimental/swift/TensorFlowLite.tulsiproj` using
the [TulsiApp](https://github.com/bazelbuild/tulsi)
or by running the
[`generate_xcodeproj.sh`](https://github.com/bazelbuild/tulsi/blob/master/src/tools/generate_xcodeproj.sh)
script from the root `tensorflow` directory:
```shell
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/swift/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj
```