STT-tensorflow/tensorflow/python/framework/graph_building_benchmark.py
Saurabh Saxena 9f2609a382 Add some graph building benchmarks.
PiperOrigin-RevId: 290869352
Change-Id: I56fc01885de59f31a4424b3b76c90bcdde7b5d50
2020-01-21 18:43:47 -08:00

102 lines
3.3 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Benchmarks for low-level graph building primitives.
To run CPU benchmarks:
bazel run -c opt graph_building_benchmarks -- --benchmarks=.
To run GPU benchmarks:
bazel run --config=cuda -c opt --copt="-mavx" graph_building_benchmarks -- \
--benchmarks=.
To run a subset of benchmarks using --benchmarks flag.
--benchmarks: the list of benchmarks to run. The specified value is interpreted
as a regular expression and any benchmark whose name contains a partial match
to the regular expression is executed.
e.g. --benchmarks=".*MatMul.*" will run all matmul related benchmarks.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.platform import test
def run_benchmark(func, num_iters):
start = time.time()
for _ in range(num_iters):
func()
end = time.time()
return end - start
class SingleOpBenchmarks(test.Benchmark):
"""Benchmark for graph building time of ops."""
def _run_and_report(self, func, num_iters):
total_time = run_benchmark(func, num_iters)
mean_us = total_time * 1e6 / num_iters
self.report_benchmark(
iters=num_iters,
wall_time=mean_us,
extras={
"examples_per_sec": float("{0:.3f}".format(num_iters / total_time)),
})
def benchmarkAddScalars(self):
with context.execution_mode(context.GRAPH_MODE):
x = array_ops.placeholder(shape=[], dtype=dtypes.float32, name="x")
y = array_ops.placeholder(shape=[], dtype=dtypes.float32, name="y")
def bench():
return gen_math_ops.add(x, y)
self._run_and_report(bench, 1000)
def benchmarkAddBatchedMatrices(self):
with context.execution_mode(context.GRAPH_MODE):
x = array_ops.placeholder(
shape=[32, 784, 1000], dtype=dtypes.float32, name="x")
y = array_ops.placeholder(
shape=[32, 784, 1000], dtype=dtypes.float32, name="y")
def bench():
return gen_math_ops.add(x, y)
self._run_and_report(bench, 1000)
def benchmarkMatMul(self):
with context.execution_mode(context.GRAPH_MODE):
x = array_ops.placeholder(
shape=[784, 1000], dtype=dtypes.float32, name="x")
y = array_ops.placeholder(
shape=[1000, 1000], dtype=dtypes.float32, name="y")
def bench():
return gen_math_ops.mat_mul(x, y)
self._run_and_report(bench, 1000)
if __name__ == "__main__":
test.main()