Add some graph building benchmarks.
PiperOrigin-RevId: 290869352 Change-Id: I56fc01885de59f31a4424b3b76c90bcdde7b5d50
This commit is contained in:
parent
69905619c9
commit
9f2609a382
@ -7190,6 +7190,22 @@ cuda_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "graph_building_benchmark",
|
||||
size = "medium",
|
||||
srcs = ["framework/graph_building_benchmark.py"],
|
||||
main = "framework/graph_building_benchmark.py",
|
||||
python_version = "PY3",
|
||||
deps = [
|
||||
":array_ops",
|
||||
":client_testlib",
|
||||
":dtypes",
|
||||
":math_ops",
|
||||
":platform_benchmark",
|
||||
"//tensorflow/python/eager:context",
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "nn_grad_test",
|
||||
size = "small",
|
||||
|
101
tensorflow/python/framework/graph_building_benchmark.py
Normal file
101
tensorflow/python/framework/graph_building_benchmark.py
Normal file
@ -0,0 +1,101 @@
|
||||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
r"""Benchmarks for low-level graph building primitives.
|
||||
|
||||
To run CPU benchmarks:
|
||||
bazel run -c opt graph_building_benchmarks -- --benchmarks=.
|
||||
|
||||
To run GPU benchmarks:
|
||||
bazel run --config=cuda -c opt --copt="-mavx" graph_building_benchmarks -- \
|
||||
--benchmarks=.
|
||||
|
||||
To run a subset of benchmarks using --benchmarks flag.
|
||||
--benchmarks: the list of benchmarks to run. The specified value is interpreted
|
||||
as a regular expression and any benchmark whose name contains a partial match
|
||||
to the regular expression is executed.
|
||||
e.g. --benchmarks=".*MatMul.*" will run all matmul related benchmarks.
|
||||
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import time
|
||||
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import gen_math_ops
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
|
||||
def run_benchmark(func, num_iters):
|
||||
start = time.time()
|
||||
for _ in range(num_iters):
|
||||
func()
|
||||
end = time.time()
|
||||
return end - start
|
||||
|
||||
|
||||
class SingleOpBenchmarks(test.Benchmark):
|
||||
"""Benchmark for graph building time of ops."""
|
||||
|
||||
def _run_and_report(self, func, num_iters):
|
||||
total_time = run_benchmark(func, num_iters)
|
||||
mean_us = total_time * 1e6 / num_iters
|
||||
self.report_benchmark(
|
||||
iters=num_iters,
|
||||
wall_time=mean_us,
|
||||
extras={
|
||||
"examples_per_sec": float("{0:.3f}".format(num_iters / total_time)),
|
||||
})
|
||||
|
||||
def benchmarkAddScalars(self):
|
||||
with context.execution_mode(context.GRAPH_MODE):
|
||||
x = array_ops.placeholder(shape=[], dtype=dtypes.float32, name="x")
|
||||
y = array_ops.placeholder(shape=[], dtype=dtypes.float32, name="y")
|
||||
|
||||
def bench():
|
||||
return gen_math_ops.add(x, y)
|
||||
|
||||
self._run_and_report(bench, 1000)
|
||||
|
||||
def benchmarkAddBatchedMatrices(self):
|
||||
with context.execution_mode(context.GRAPH_MODE):
|
||||
x = array_ops.placeholder(
|
||||
shape=[32, 784, 1000], dtype=dtypes.float32, name="x")
|
||||
y = array_ops.placeholder(
|
||||
shape=[32, 784, 1000], dtype=dtypes.float32, name="y")
|
||||
|
||||
def bench():
|
||||
return gen_math_ops.add(x, y)
|
||||
|
||||
self._run_and_report(bench, 1000)
|
||||
|
||||
def benchmarkMatMul(self):
|
||||
with context.execution_mode(context.GRAPH_MODE):
|
||||
x = array_ops.placeholder(
|
||||
shape=[784, 1000], dtype=dtypes.float32, name="x")
|
||||
y = array_ops.placeholder(
|
||||
shape=[1000, 1000], dtype=dtypes.float32, name="y")
|
||||
|
||||
def bench():
|
||||
return gen_math_ops.mat_mul(x, y)
|
||||
|
||||
self._run_and_report(bench, 1000)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test.main()
|
Loading…
Reference in New Issue
Block a user