GitHub does not insert automatic links and smart code snippets in these files, so we have to do it manually. PiperOrigin-RevId: 333195707 Change-Id: I1e2fed8ff207fbfce6eb8fb2b910d12bcab4100c
2.0 KiB
TFSA-2020-016: Segfault due to invalid splits in RaggedCountSparseOutput
CVE Number
CVE-2020-15200
Impact
The RaggedCountSparseOutput
implementation does not validate that the input
arguments form a valid ragged tensor. In particular, there is no validation that
the values in the splits
tensor generate a valid partitioning of the values
tensor. Thus, the following
code sets up conditions to cause a heap buffer overflow:
auto per_batch_counts = BatchedMap<W>(num_batches);
int batch_idx = 0;
for (int idx = 0; idx < num_values; ++idx) {
while (idx >= splits_values(batch_idx)) {
batch_idx++;
}
const auto& value = values_values(idx);
if (value >= 0 && (maxlength_ <= 0 || value < maxlength_)) {
per_batch_counts[batch_idx - 1][value] = 1;
}
}
A BatchedMap
is equivalent to a vector where each element is a hashmap.
However, if the first element of splits_values
is not 0, batch_idx
will
never be 1, hence there will be no hashmap at index 0 in per_batch_counts
.
Trying to access that in the user code results in a segmentation fault.
Vulnerable Versions
TensorFlow 2.3.0.
Patches
We have patched the issue in 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and will release a patch release.
We recommend users to upgrade to TensorFlow 2.3.1.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been discovered through a variant analysis of a vulnerability reported by members of the Aivul Team from Qihoo 360.