GitHub does not insert automatic links and smart code snippets in these files, so we have to do it manually. PiperOrigin-RevId: 333195707 Change-Id: I1e2fed8ff207fbfce6eb8fb2b910d12bcab4100c
3.2 KiB
TFSA-2020-013: Format-string vulnerability in TensorFlow's as_string
CVE Number
CVE-2020-15203
Impact
By controlling the fill
argument of
tf.strings.as_string
,
a malicious attacker is able to trigger a format string vulnerability due to the
way the internal format use in a printf
call is
constructed:
format_ = "%";
if (width > -1) {
strings::Appendf(&format_, "%s%d", fill_string.c_str(), width);
}
if (precision > -1) {
strings::Appendf(&format_, ".%d", precision);
}
This can result in unexpected output:
In [1]: tf.strings.as_string(input=[1234], width=6, fill='-')
Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '],
dtype=object)>
In [2]: tf.strings.as_string(input=[1234], width=6, fill='+')
Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'],
dtype=object)>
In [3]: tf.strings.as_string(input=[1234], width=6, fill="h")
Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'],
dtype=object)>
In [4]: tf.strings.as_string(input=[1234], width=6, fill="d")
Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'],
dtype=object)>
In [5]: tf.strings.as_string(input=[1234], width=6, fill="o")
Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'],
dtype=object)>
In [6]: tf.strings.as_string(input=[1234], width=6, fill="x")
Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'],
dtype=object)>
In [7]: tf.strings.as_string(input=[1234], width=6, fill="g")
Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'],
dtype=object)>
In [8]: tf.strings.as_string(input=[1234], width=6, fill="a")
Out[8]: <tf.Tensor: shape=(1,), dtype=string,
numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)>
In [9]: tf.strings.as_string(input=[1234], width=6, fill="c")
Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'],
dtype=object)>
In [10]: tf.strings.as_string(input=[1234], width=6, fill="p")
Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'],
dtype=object)>
In [11]: tf.strings.as_string(input=[1234], width=6, fill='m')
Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'],
dtype=object)>
However, passing in n
or s
results in segmentation fault.
Vulnerable Versions
TensorFlow 1.15.0, 1.15.1, 1.15.2, 1.15.3, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1, 2.2.0, 2.3.0.
Patches
We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.