GitHub does not insert automatic links and smart code snippets in these files, so we have to do it manually. PiperOrigin-RevId: 333195707 Change-Id: I1e2fed8ff207fbfce6eb8fb2b910d12bcab4100c
3.6 KiB
TFSA-2020-005: Out of bounds access in TFLite operators
CVE Number
CVE-2020-15211
Impact
In TensorFlow Lite, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor:
return &context->tensors[node->inputs->data[index]];
However, some operators can have some tensors be optional. To handle this
scenario, the flatbuffer model uses a negative -1
value as index for these tensors:
#define kTfLiteOptionalTensor (-1)
This results in special casing during validation at model loading time:
for (int i = 0; i < length; i++) {
int index = indices[i];
// Continue if index == kTfLiteOptionalTensor before additional comparisons
// below, size_t(-1) is always >= context_tensors_size.
if (index == kTfLiteOptionalTensor) {
continue;
}
if (index < 0 || static_cast<size_t>(index) >= context_.tensors_size) {
ReportError(
"Invalid tensor index %d in %s. The subgraph has %d tensors\n", index,
label, context_.tensors_size);
consistent_ = false;
return kTfLiteError;
}
}
Unfortunately, this means that the -1
index is a valid tensor index for any
operator, including those that don't expect optional inputs and including for
output tensors. Thus, this allows writing and reading from outside the bounds of
heap allocated arrays, although only at a specific offset from the start of
these arrays.
This results in both read and write gadgets, albeit very limited in scope.
Vulnerable Versions
TensorFlow 1.15.0, 1.15.1, 1.15.2, 1.15.3, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1, 2.2.0, 2.3.0.
Patches
We have patched the issue in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83). We will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Workarounds
A potential workaround would be to add a custom Verifier
to the model loading
code to ensure that only operators which accept optional inputs use the -1
special value and only for the tensors that they expect to be optional. Since
this allow-list type approach is erro-prone, we advise upgrading to the patched
code.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.