4.2 KiB
Generate code from TensorFlow Lite metadata
Note: TensorFlow Lite wrapper code generator is in experimental (beta) phase and currently only supports Android.
For TensorFlow Lite model enhanced with metadata,
developers can use the TensorFlow Lite Android wrapper code generator to create
platform specific wrapper code. The wrapper code removes the need to interact
directly with ByteBuffer
. Instead, developers can interact with the TensorFlow
Lite model with typed objects such as Bitmap
and Rect
.
The usefulness of the code generator depend on the completeness of the
TensorFlow Lite model's metadata entry. Refer to the <Codegen usage>
section
under relevant fields in
metadata_schema.fbs,
to see how the codegen tool parses each field.
Generate Wrapper Code
You will need to install the following tooling in your terminal:
pip install tflite-support
Once completed, the code generator can be used using the following syntax:
tflite_codegen --model=./model_with_metadata/mobilenet_v1_0.75_160_quantized.tflite \
--package_name=org.tensorflow.lite.classify \
--model_class_name=MyClassifierModel \
--destination=./classify_wrapper
The resulting code will be located in the destination directory. If you are using Google Colab or other remote environment, it maybe easier to zip up the result in a zip archive and download it to your Android Studio project:
## Zip up the generated code
!zip -r classify_wrapper.zip classify_wrapper/
## Kick off the download
from google.colab import files
files.download('classify_wrapper.zip')
Using the generated code
Step 1: Import the generated code
Unzip the generated code if necessary into a directory structure. The root of
the generated code is assumed to be SRC_ROOT
.
Open the Android Studio project where you would like to use the TensorFlow lite
model and import the generated module by: And File -> New -> Import Module ->
select SRC_ROOT
Using the above example, the directory and the module imported would be called
classify_wrapper
.
Step 2: Update the app's build.gradle
file
In the app module that will be consuming the generated library module:
Under the android section, add the following:
aaptOptions {
noCompress "tflite"
}
Under the dependencies section, add the following:
implementation project(":classify_wrapper")
Step 3: Using the model
// 1. Initialize the model
MyClassifierModel myImageClassifier = null;
try {
myImageClassifier = new MyClassifierModel(this);
} catch (IOException io){
// Error reading the model
}
if(null != myImageClassifier) {
// 2. Set the input with a Bitmap called inputBitmap
MyClassifierModel.Inputs inputs = myImageClassifier.createInputs();
inputs.loadImage(inputBitmap));
// 3. Run the model
MyClassifierModel.Outputs outputs = myImageClassifier.run(inputs);
// 4. Retrieve the result
Map<String, Float> labeledProbability = outputs.getProbability();
}
Accelerating model inference
The generated code provides a way for developers to accelerate their code through the use of delegates and the number of threads. These can be set when initiatizing the model object as it takes three parameters:
Context
: Context from the Android Activity or Service- (Optional)
Device
: TFLite acceleration delegate for example GPUDelegate or NNAPIDelegate - (Optional)
numThreads
: Number of threads used to run the model - default is one.
For example, to use a NNAPI delegate and up to three threads, you can initialize the model like this:
try {
myImageClassifier = new MyClassifierModel(this, Model.Device.NNAPI, 3);
} catch (IOException io){
// Error reading the model
}
Troubleshooting
Getting 'java.io.FileNotFoundException: This file can not be opened as a file descriptor; it is probably compressed'
Under the app module that will uses the library module, insert the following lines under the android section:
aaptOptions {
noCompress "tflite"
}