STT-tensorflow/tensorflow/java/README.md

120 lines
4.4 KiB
Markdown

# TensorFlow for Java
> *WARNING*: The TensorFlow Java API is not currently covered by the TensorFlow
> [API stability guarantees](https://www.tensorflow.org/guide/version_compat).
>
> For using TensorFlow on Android refer instead to [TensorFlow Lite](https://www.tensorflow.org/code/tensorflow/lite/).
## Quickstart
- Refer to [Installing TensorFlow for Java](https://www.tensorflow.org/install/lang_java)
- [Javadoc](https://www.tensorflow.org/api_docs/java/reference/org/tensorflow/package-summary)
- [![Maven Central](https://maven-badges.herokuapp.com/maven-central/org.tensorflow/tensorflow/badge.svg)](https://maven-badges.herokuapp.com/maven-central/org.tensorflow/tensorflow)
## Nightly builds
Releases built from release branches are available on Maven Central.
Additionally, every day binaries are built from the `master` branch on GitHub:
- [JAR](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow.jar)
- [Source JAR](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow-src.jar)
- JNI:
- [Linux CPU-only](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow_jni-cpu-linux-x86_64.tar.gz)
- [Linux GPU](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow_jni-gpu-linux-x86_64.tar.gz)
- [MacOS](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow_jni-cpu-darwin-x86_64.tar.gz)
- Windows: (No nightly builds available yet)
## Building from source
If the quickstart instructions above do not work out, the TensorFlow Java and
native libraries will need to be built from source.
1. Install [bazel](https://www.bazel.build/versions/master/docs/install.html)
2. Setup the environment to build TensorFlow from source code
([Linux or macOS](https://www.tensorflow.org/install/source)).
If you'd like to skip reading those details and do not care about GPU
support, try the following:
```sh
# On Linux
sudo apt-get install python swig python-numpy
# On Mac OS X with homebrew
brew install swig
```
3. [Configure](https://www.tensorflow.org/install/source)
(e.g., enable GPU support) and build:
```sh
./configure
bazel build --config opt \
//tensorflow/java:tensorflow \
//tensorflow/java:libtensorflow_jni
```
The command above will produce two files in the `bazel-bin/tensorflow/java`
directory:
* An archive of Java classes: `libtensorflow.jar`
* A native library: `libtensorflow_jni.so` on Linux, `libtensorflow_jni.dylib`
on OS X, or `tensorflow_jni.dll` on Windows.
To compile Java code that uses the TensorFlow Java API, include
`libtensorflow.jar` in the classpath. For example:
```sh
javac -cp bazel-bin/tensorflow/java/libtensorflow.jar ...
```
To execute the compiled program, include `libtensorflow.jar` in the classpath
and the native library in the library path. For example:
```sh
java -cp bazel-bin/tensorflow/java/libtensorflow.jar \
-Djava.library.path=bazel-bin/tensorflow/java \
...
```
Installation on Windows requires the more experimental [bazel on
Windows](https://bazel.build/versions/master/docs/windows.html). Details are
omitted here, but find inspiration in the script used for building the release
archive:
[`tensorflow/tools/ci_build/windows/libtensorflow_cpu.sh`](https://www.tensorflow.org/code/tensorflow/tools/ci_build/windows/libtensorflow_cpu.sh).
### Maven
Details of the release process for Maven Central are in
[`maven/README.md`](https://www.tensorflow.org/code/tensorflow/java/maven/README.md).
However, for development, you can push the library built from source to a local
Maven repository with:
```sh
bazel build -c opt //tensorflow/java:pom
mvn install:install-file \
-Dfile=../../bazel-bin/tensorflow/java/libtensorflow.jar \
-DpomFile=../../bazel-bin/tensorflow/java/pom.xml
```
And then refer to this library in a project's `pom.xml` with: (replacing
VERSION with the appropriate version of TensorFlow):
```xml
<dependency>
<groupId>org.tensorflow</groupId>
<artifactId>libtensorflow</artifactId>
<version>VERSION</version>
</dependency>
```
### Bazel
If your project uses bazel for builds, add a dependency on
`//tensorflow/java:tensorflow` to the `java_binary` or `java_library` rule. For
example:
```sh
bazel run -c opt //tensorflow/java/src/main/java/org/tensorflow/examples:label_image
```