STT-tensorflow/tensorflow/python/keras/applications/imagenet_utils_test.py

256 lines
8.7 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for imagenet_utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras.applications import imagenet_utils as utils
from tensorflow.python.platform import test
class TestImageNetUtils(keras_parameterized.TestCase):
def test_preprocess_input(self):
# Test invalid mode check
x = np.random.uniform(0, 255, (10, 10, 3))
with self.assertRaises(ValueError):
utils.preprocess_input(x, mode='some_unknown_mode')
# Test image batch with float and int image input
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int32')
self.assertEqual(utils.preprocess_input(x).shape, x.shape)
self.assertEqual(utils.preprocess_input(xint).shape, xint.shape)
out1 = utils.preprocess_input(x, 'channels_last')
out1int = utils.preprocess_input(xint, 'channels_last')
out2 = utils.preprocess_input(
np.transpose(x, (0, 3, 1, 2)), 'channels_first')
out2int = utils.preprocess_input(
np.transpose(xint, (0, 3, 1, 2)), 'channels_first')
self.assertAllClose(out1, out2.transpose(0, 2, 3, 1))
self.assertAllClose(out1int, out2int.transpose(0, 2, 3, 1))
# Test single image
x = np.random.uniform(0, 255, (10, 10, 3))
xint = x.astype('int32')
self.assertEqual(utils.preprocess_input(x).shape, x.shape)
self.assertEqual(utils.preprocess_input(xint).shape, xint.shape)
out1 = utils.preprocess_input(x, 'channels_last')
out1int = utils.preprocess_input(xint, 'channels_last')
out2 = utils.preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first')
out2int = utils.preprocess_input(
np.transpose(xint, (2, 0, 1)), 'channels_first')
self.assertAllClose(out1, out2.transpose(1, 2, 0))
self.assertAllClose(out1int, out2int.transpose(1, 2, 0))
# Test that writing over the input data works predictably
for mode in ['torch', 'tf']:
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int')
x2 = utils.preprocess_input(x, mode=mode)
xint2 = utils.preprocess_input(xint)
self.assertAllClose(x, x2)
self.assertNotEqual(xint.astype('float').max(), xint2.max())
# Caffe mode works differently from the others
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int')
x2 = utils.preprocess_input(x, data_format='channels_last', mode='caffe')
xint2 = utils.preprocess_input(xint)
self.assertAllClose(x, x2[..., ::-1])
self.assertNotEqual(xint.astype('float').max(), xint2.max())
def test_preprocess_input_symbolic(self):
# Test image batch
x = np.random.uniform(0, 255, (2, 10, 10, 3))
inputs = keras.layers.Input(shape=x.shape[1:])
outputs = keras.layers.Lambda(
utils.preprocess_input, output_shape=x.shape[1:])(
inputs)
model = keras.Model(inputs, outputs)
self.assertEqual(model.predict(x).shape, x.shape)
outputs1 = keras.layers.Lambda(
lambda x: utils.preprocess_input(x, 'channels_last'),
output_shape=x.shape[1:])(
inputs)
model1 = keras.Model(inputs, outputs1)
out1 = model1.predict(x)
x2 = np.transpose(x, (0, 3, 1, 2))
inputs2 = keras.layers.Input(shape=x2.shape[1:])
outputs2 = keras.layers.Lambda(
lambda x: utils.preprocess_input(x, 'channels_first'),
output_shape=x2.shape[1:])(
inputs2)
model2 = keras.Model(inputs2, outputs2)
out2 = model2.predict(x2)
self.assertAllClose(out1, out2.transpose(0, 2, 3, 1))
# Test single image
x = np.random.uniform(0, 255, (10, 10, 3))
inputs = keras.layers.Input(shape=x.shape)
outputs = keras.layers.Lambda(
utils.preprocess_input, output_shape=x.shape)(
inputs)
model = keras.Model(inputs, outputs)
self.assertEqual(model.predict(x[np.newaxis])[0].shape, x.shape)
outputs1 = keras.layers.Lambda(
lambda x: utils.preprocess_input(x, 'channels_last'),
output_shape=x.shape)(
inputs)
model1 = keras.Model(inputs, outputs1)
out1 = model1.predict(x[np.newaxis])[0]
x2 = np.transpose(x, (2, 0, 1))
inputs2 = keras.layers.Input(shape=x2.shape)
outputs2 = keras.layers.Lambda(
lambda x: utils.preprocess_input(x, 'channels_first'),
output_shape=x2.shape)(
inputs2)
model2 = keras.Model(inputs2, outputs2)
out2 = model2.predict(x2[np.newaxis])[0]
self.assertAllClose(out1, out2.transpose(1, 2, 0))
@parameterized.named_parameters([
{'testcase_name': 'channels_last_format',
'data_format': 'channels_last'},
{'testcase_name': 'channels_first_format',
'data_format': 'channels_first'},
])
def test_obtain_input_shape(self, data_format):
# input_shape and default_size are not identical.
with self.assertRaises(ValueError):
utils.obtain_input_shape(
input_shape=(224, 224, 3),
default_size=299,
min_size=139,
data_format='channels_last',
require_flatten=True,
weights='imagenet')
# Test invalid use cases
shape = (139, 139)
if data_format == 'channels_last':
input_shape = shape + (99,)
else:
input_shape = (99,) + shape
# input_shape is smaller than min_size.
shape = (100, 100)
if data_format == 'channels_last':
input_shape = shape + (3,)
else:
input_shape = (3,) + shape
with self.assertRaises(ValueError):
utils.obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# shape is 1D.
shape = (100,)
if data_format == 'channels_last':
input_shape = shape + (3,)
else:
input_shape = (3,) + shape
with self.assertRaises(ValueError):
utils.obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# the number of channels is 5 not 3.
shape = (100, 100)
if data_format == 'channels_last':
input_shape = shape + (5,)
else:
input_shape = (5,) + shape
with self.assertRaises(ValueError):
utils.obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# require_flatten=True with dynamic input shape.
with self.assertRaises(ValueError):
utils.obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=True)
# test include top
self.assertEqual(utils.obtain_input_shape(
input_shape=(3, 200, 200),
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=True), (3, 200, 200))
self.assertEqual(utils.obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False), (None, None, 3))
self.assertEqual(utils.obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=False), (3, None, None))
self.assertEqual(utils.obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False), (None, None, 3))
self.assertEqual(utils.obtain_input_shape(
input_shape=(150, 150, 3),
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False), (150, 150, 3))
self.assertEqual(utils.obtain_input_shape(
input_shape=(3, None, None),
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=False), (3, None, None))
if __name__ == '__main__':
test.main()