Edited docstrings, added unit test, and fixed minor typos
This commit is contained in:
parent
f673a86e1c
commit
db1e40b9c5
@ -393,7 +393,9 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
@ -66,7 +66,7 @@ PREPROCESS_INPUT_DOC = """
|
||||
{ret}
|
||||
|
||||
Raises:
|
||||
ValueError: In case of unknown `mode` or `data_format` argument.
|
||||
{error}
|
||||
"""
|
||||
|
||||
PREPROCESS_INPUT_MODE_DOC = """
|
||||
@ -82,12 +82,21 @@ PREPROCESS_INPUT_MODE_DOC = """
|
||||
ImageNet dataset.
|
||||
"""
|
||||
|
||||
PREPROCESS_INPUT_DEFAULT_ERROR_DOC = """
|
||||
ValueError: In case of unknown `mode` or `data_format` argument.
|
||||
"""
|
||||
|
||||
PREPROCESS_INPUT_ERROR_DOC = """
|
||||
ValueError: In case of unknown `data_format` argument.
|
||||
"""
|
||||
|
||||
|
||||
PREPROCESS_INPUT_RET_DOC_TF = """
|
||||
The inputs pixel values are scaled between -1 and 1, sample-wise."""
|
||||
|
||||
PREPROCESS_INPUT_RET_DOC_TORCH = """
|
||||
The input pixels values are scaled between 0 and 1 and each channel is
|
||||
normalized with respect to the InageNet dataset."""
|
||||
normalized with respect to the ImageNet dataset."""
|
||||
|
||||
PREPROCESS_INPUT_RET_DOC_CAFFE = """
|
||||
The images are converted from RGB to BGR, then each color channel is
|
||||
@ -114,7 +123,8 @@ def preprocess_input(x, data_format=None, mode='caffe'):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = PREPROCESS_INPUT_DOC.format(
|
||||
mode=PREPROCESS_INPUT_MODE_DOC, ret='')
|
||||
mode=PREPROCESS_INPUT_MODE_DOC, ret='',
|
||||
error=PREPROCESS_INPUT_DEFAULT_ERROR_DOC)
|
||||
|
||||
|
||||
@keras_export('keras.applications.imagenet_utils.decode_predictions')
|
||||
|
@ -29,6 +29,11 @@ from tensorflow.python.platform import test
|
||||
class TestImageNetUtils(keras_parameterized.TestCase):
|
||||
|
||||
def test_preprocess_input(self):
|
||||
# Test invalid mode check
|
||||
x = np.random.uniform(0, 255, (10, 10, 3))
|
||||
with self.assertRaises(ValueError):
|
||||
utils.preprocess_input(x, mode='some_unknown_mode')
|
||||
|
||||
# Test image batch with float and int image input
|
||||
x = np.random.uniform(0, 255, (2, 10, 10, 3))
|
||||
xint = x.astype('int32')
|
||||
|
@ -412,5 +412,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -440,5 +440,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -473,5 +473,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -506,5 +506,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -819,5 +819,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -553,7 +553,9 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
@ -164,7 +164,9 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
@ -262,5 +262,7 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE)
|
||||
mode='',
|
||||
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
@ -267,5 +267,6 @@ def decode_predictions(preds, top=5):
|
||||
|
||||
|
||||
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE)
|
||||
mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
|
||||
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
||||
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
Loading…
Reference in New Issue
Block a user