STT-tensorflow/tensorflow/python/ops/array_ops_test.py
Yanhua Sun 5198b44674 Remove v1 only decorator
PiperOrigin-RevId: 323639834
Change-Id: Ie65dfb649898e138f5b2aad046fd9fc6d3f231c0
2020-07-28 13:28:49 -07:00

81 lines
3.0 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for array operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import backprop
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import test
class ArrayOpTest(test.TestCase):
def testGatherGradHasPartialStaticShape(self):
# Create a tensor with an unknown dim 1.
x = random_ops.random_normal([4, 10, 10])
x = array_ops.gather(
x,
array_ops.reshape(array_ops.where_v2(x[0, :, 0] > 0.5), [-1]),
axis=1)
x.shape.assert_is_compatible_with([4, None, 10])
with backprop.GradientTape() as tape:
tape.watch(x)
a = array_ops.gather(array_ops.gather(x, [0, 1]), [0, 1])
grad_a = tape.gradient(a, x)
with backprop.GradientTape() as tape:
tape.watch(x)
b = array_ops.gather(array_ops.gather(x, [2, 3], axis=2), [0, 1])
grad_b = tape.gradient(b, x)
# We make sure that the representation of the shapes are correct; the shape
# equality check will always eval to false due to the shapes being partial.
grad_a.shape.assert_is_compatible_with([None, None, 10])
grad_b.shape.assert_is_compatible_with([4, None, 10])
def testReshapeShapeInference(self):
# Create a tensor with an unknown dim 1.
x = random_ops.random_normal([4, 10, 10])
x = array_ops.gather(
x,
array_ops.reshape(array_ops.where_v2(x[0, :, 0] > 0.5), [-1]),
axis=1)
x.shape.assert_is_compatible_with([4, None, 10])
a = array_ops.reshape(x, array_ops.shape(x))
a.shape.assert_is_compatible_with([4, None, 10])
b = array_ops.reshape(x, math_ops.cast(array_ops.shape(x), dtypes.int64))
b.shape.assert_is_compatible_with([4, None, 10])
# We do not shape-infer across a tf.cast into anything that's not tf.int32
# or tf.int64, since they might end up mangling the shape.
c = array_ops.reshape(
x,
math_ops.cast(
math_ops.cast(array_ops.shape(x), dtypes.float32), dtypes.int32))
c.shape.assert_is_compatible_with([None, None, None])
def testEmptyMeshgrid(self):
self.assertEqual(array_ops.meshgrid(), [])
if __name__ == "__main__":
test.main()