Remove v1 only decorator
PiperOrigin-RevId: 323639834 Change-Id: Ie65dfb649898e138f5b2aad046fd9fc6d3f231c0
This commit is contained in:
parent
68b5f1defd
commit
5198b44674
@ -18,11 +18,9 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from tensorflow.python.eager import backprop
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import gradients
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import random_ops
|
||||
from tensorflow.python.platform import test
|
||||
@ -30,7 +28,6 @@ from tensorflow.python.platform import test
|
||||
|
||||
class ArrayOpTest(test.TestCase):
|
||||
|
||||
@test_util.deprecated_graph_mode_only
|
||||
def testGatherGradHasPartialStaticShape(self):
|
||||
# Create a tensor with an unknown dim 1.
|
||||
x = random_ops.random_normal([4, 10, 10])
|
||||
@ -38,19 +35,22 @@ class ArrayOpTest(test.TestCase):
|
||||
x,
|
||||
array_ops.reshape(array_ops.where_v2(x[0, :, 0] > 0.5), [-1]),
|
||||
axis=1)
|
||||
self.assertAllEqual(x.shape.as_list(), [4, None, 10])
|
||||
x.shape.assert_is_compatible_with([4, None, 10])
|
||||
|
||||
a = array_ops.gather(array_ops.gather(x, [0, 1]), [0, 1])
|
||||
b = array_ops.gather(array_ops.gather(x, [2, 3], axis=2), [0, 1])
|
||||
grad_a = ops.convert_to_tensor(gradients.gradients(a, x)[0])
|
||||
grad_b = ops.convert_to_tensor(gradients.gradients(b, x)[0])
|
||||
with backprop.GradientTape() as tape:
|
||||
tape.watch(x)
|
||||
a = array_ops.gather(array_ops.gather(x, [0, 1]), [0, 1])
|
||||
grad_a = tape.gradient(a, x)
|
||||
with backprop.GradientTape() as tape:
|
||||
tape.watch(x)
|
||||
b = array_ops.gather(array_ops.gather(x, [2, 3], axis=2), [0, 1])
|
||||
grad_b = tape.gradient(b, x)
|
||||
|
||||
# We make sure that the representation of the shapes are correct; the shape
|
||||
# equality check will always eval to false due to the shapes being partial.
|
||||
self.assertAllEqual(grad_a.shape.as_list(), [None, None, 10])
|
||||
self.assertAllEqual(grad_b.shape.as_list(), [4, None, 10])
|
||||
grad_a.shape.assert_is_compatible_with([None, None, 10])
|
||||
grad_b.shape.assert_is_compatible_with([4, None, 10])
|
||||
|
||||
@test_util.deprecated_graph_mode_only
|
||||
def testReshapeShapeInference(self):
|
||||
# Create a tensor with an unknown dim 1.
|
||||
x = random_ops.random_normal([4, 10, 10])
|
||||
@ -58,11 +58,11 @@ class ArrayOpTest(test.TestCase):
|
||||
x,
|
||||
array_ops.reshape(array_ops.where_v2(x[0, :, 0] > 0.5), [-1]),
|
||||
axis=1)
|
||||
self.assertAllEqual(x.shape.as_list(), [4, None, 10])
|
||||
x.shape.assert_is_compatible_with([4, None, 10])
|
||||
a = array_ops.reshape(x, array_ops.shape(x))
|
||||
self.assertAllEqual(a.shape.as_list(), [4, None, 10])
|
||||
a.shape.assert_is_compatible_with([4, None, 10])
|
||||
b = array_ops.reshape(x, math_ops.cast(array_ops.shape(x), dtypes.int64))
|
||||
self.assertAllEqual(b.shape.as_list(), [4, None, 10])
|
||||
b.shape.assert_is_compatible_with([4, None, 10])
|
||||
|
||||
# We do not shape-infer across a tf.cast into anything that's not tf.int32
|
||||
# or tf.int64, since they might end up mangling the shape.
|
||||
@ -70,7 +70,7 @@ class ArrayOpTest(test.TestCase):
|
||||
x,
|
||||
math_ops.cast(
|
||||
math_ops.cast(array_ops.shape(x), dtypes.float32), dtypes.int32))
|
||||
self.assertAllEqual(c.shape.as_list(), [None, None, None])
|
||||
c.shape.assert_is_compatible_with([None, None, None])
|
||||
|
||||
def testEmptyMeshgrid(self):
|
||||
self.assertEqual(array_ops.meshgrid(), [])
|
||||
|
Loading…
Reference in New Issue
Block a user