This is built on DUS and requires the 'axis' input to be a constant. It might be possible to remove that restriction, but I'm currently not sure how. PiperOrigin-RevId: 254538077
69 lines
2.5 KiB
Python
69 lines
2.5 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test cases for manip ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import manip_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class ManipOpsTest(xla_test.XLATestCase):
|
|
"""Test cases for manip ops."""
|
|
|
|
def _testRoll(self, a, shift, axis):
|
|
with self.session() as session:
|
|
with self.test_scope():
|
|
p = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
|
|
output = manip_ops.roll(a, shift, axis)
|
|
result = session.run(output, {p: a})
|
|
self.assertAllEqual(result, np.roll(a, shift, axis))
|
|
|
|
def testNumericTypes(self):
|
|
for t in self.numeric_types:
|
|
self._testRoll(np.random.randint(-100, 100, (5)).astype(t), 3, 0)
|
|
self._testRoll(
|
|
np.random.randint(-100, 100, (4, 4, 3)).astype(t), [1, -6, 6],
|
|
[0, 1, 2])
|
|
self._testRoll(
|
|
np.random.randint(-100, 100, (4, 2, 1, 3)).astype(t), [0, 1, -2],
|
|
[1, 2, 3])
|
|
|
|
def testFloatTypes(self):
|
|
for t in self.float_types:
|
|
self._testRoll(np.random.rand(5).astype(t), 2, 0)
|
|
self._testRoll(np.random.rand(3, 4).astype(t), [1, 2], [1, 0])
|
|
self._testRoll(np.random.rand(1, 3, 4).astype(t), [1, 0, -3], [0, 1, 2])
|
|
|
|
def testComplexTypes(self):
|
|
for t in self.complex_types:
|
|
x = np.random.rand(4, 4).astype(t)
|
|
self._testRoll(x + 1j * x, 2, 0)
|
|
x = np.random.rand(2, 5).astype(t)
|
|
self._testRoll(x + 1j * x, [1, 2], [1, 0])
|
|
x = np.random.rand(3, 2, 1, 1).astype(t)
|
|
self._testRoll(x + 1j * x, [2, 1, 1, 0], [0, 3, 1, 2])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|