[TF:XLA] Implement support for tf.roll
This is built on DUS and requires the 'axis' input to be a constant. It might be possible to remove that restriction, but I'm currently not sure how. PiperOrigin-RevId: 254538077
This commit is contained in:
parent
25a55b0d0c
commit
cc3bd2c8ed
@ -599,6 +599,19 @@ tf_xla_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
tf_xla_py_test(
|
||||
name = "manip_ops_test",
|
||||
size = "small",
|
||||
srcs = ["manip_ops_test.py"],
|
||||
deps = [
|
||||
":xla_test",
|
||||
"//tensorflow/python:array_ops",
|
||||
"//tensorflow/python:framework",
|
||||
"//tensorflow/python:manip_ops",
|
||||
"//tensorflow/python:platform_test",
|
||||
],
|
||||
)
|
||||
|
||||
tf_xla_py_test(
|
||||
name = "matrix_band_part_test",
|
||||
size = "medium",
|
||||
|
68
tensorflow/compiler/tests/manip_ops_test.py
Normal file
68
tensorflow/compiler/tests/manip_ops_test.py
Normal file
@ -0,0 +1,68 @@
|
||||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Test cases for manip ops."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.compiler.tests import xla_test
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import manip_ops
|
||||
from tensorflow.python.platform import googletest
|
||||
|
||||
|
||||
class ManipOpsTest(xla_test.XLATestCase):
|
||||
"""Test cases for manip ops."""
|
||||
|
||||
def _testRoll(self, a, shift, axis):
|
||||
with self.session() as session:
|
||||
with self.test_scope():
|
||||
p = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
|
||||
output = manip_ops.roll(a, shift, axis)
|
||||
result = session.run(output, {p: a})
|
||||
self.assertAllEqual(result, np.roll(a, shift, axis))
|
||||
|
||||
def testNumericTypes(self):
|
||||
for t in self.numeric_types:
|
||||
self._testRoll(np.random.randint(-100, 100, (5)).astype(t), 3, 0)
|
||||
self._testRoll(
|
||||
np.random.randint(-100, 100, (4, 4, 3)).astype(t), [1, -6, 6],
|
||||
[0, 1, 2])
|
||||
self._testRoll(
|
||||
np.random.randint(-100, 100, (4, 2, 1, 3)).astype(t), [0, 1, -2],
|
||||
[1, 2, 3])
|
||||
|
||||
def testFloatTypes(self):
|
||||
for t in self.float_types:
|
||||
self._testRoll(np.random.rand(5).astype(t), 2, 0)
|
||||
self._testRoll(np.random.rand(3, 4).astype(t), [1, 2], [1, 0])
|
||||
self._testRoll(np.random.rand(1, 3, 4).astype(t), [1, 0, -3], [0, 1, 2])
|
||||
|
||||
def testComplexTypes(self):
|
||||
for t in self.complex_types:
|
||||
x = np.random.rand(4, 4).astype(t)
|
||||
self._testRoll(x + 1j * x, 2, 0)
|
||||
x = np.random.rand(2, 5).astype(t)
|
||||
self._testRoll(x + 1j * x, [1, 2], [1, 0])
|
||||
x = np.random.rand(3, 2, 1, 1).astype(t)
|
||||
self._testRoll(x + 1j * x, [2, 1, 1, 0], [0, 3, 1, 2])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
googletest.main()
|
@ -79,6 +79,7 @@ tf_kernel_library(
|
||||
"retval_op.cc",
|
||||
"reverse_op.cc",
|
||||
"reverse_sequence_op.cc",
|
||||
"roll_op.cc",
|
||||
"scan_ops.cc",
|
||||
"scatter_nd_op.cc",
|
||||
"segment_reduction_ops.cc",
|
||||
|
89
tensorflow/compiler/tf2xla/kernels/roll_op.cc
Normal file
89
tensorflow/compiler/tf2xla/kernels/roll_op.cc
Normal file
@ -0,0 +1,89 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
|
||||
#include "tensorflow/compiler/xla/client/lib/constants.h"
|
||||
#include "tensorflow/compiler/xla/client/lib/slicing.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace {
|
||||
|
||||
class RollOp : public XlaOpKernel {
|
||||
public:
|
||||
explicit RollOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
|
||||
|
||||
void Compile(XlaOpKernelContext* ctx) override {
|
||||
const TensorShape input_shape = ctx->InputShape(0);
|
||||
xla::XlaOp shift = ctx->Input(1);
|
||||
const TensorShape shift_shape = ctx->InputShape(1);
|
||||
const TensorShape axis_shape = ctx->InputShape(2);
|
||||
|
||||
OP_REQUIRES(ctx, input_shape.dims() >= 1,
|
||||
errors::InvalidArgument("input must be 1-D or higher"));
|
||||
OP_REQUIRES(ctx, shift_shape.dims() <= 1,
|
||||
errors::InvalidArgument(
|
||||
"shift must be a scalar or a 1-D vector. Found: ",
|
||||
shift_shape.DebugString()));
|
||||
OP_REQUIRES(
|
||||
ctx, shift_shape.dims() == axis_shape.dims(),
|
||||
errors::InvalidArgument("shift and axis must have the same size"));
|
||||
|
||||
xla::Literal axis;
|
||||
OP_REQUIRES_OK(ctx, ctx->ConstantInput(2, &axis));
|
||||
|
||||
xla::XlaOp output = ctx->Input(0);
|
||||
xla::PrimitiveType shift_type = ctx->input_xla_type(1);
|
||||
int64 num_axes = axis_shape.dims() == 0 ? 1 : axis_shape.dim_size(0);
|
||||
for (int64 i = 0; i != num_axes; ++i) {
|
||||
auto cur_axis_status = axis_shape.dims() == 0
|
||||
? axis.GetIntegralAsS64({})
|
||||
: axis.GetIntegralAsS64({i});
|
||||
OP_REQUIRES_OK(ctx, cur_axis_status.status());
|
||||
int64 cur_axis = cur_axis_status.ValueOrDie();
|
||||
|
||||
xla::XlaOp offset =
|
||||
shift_shape.dims() == 0
|
||||
? shift
|
||||
: xla::Reshape(xla::SliceInDim(shift, /*start_index=*/i,
|
||||
/*limit_index=*/i + 1,
|
||||
/*stride=*/1, /*dimno=*/0),
|
||||
{});
|
||||
xla::XlaOp axis_size = xla::ConstantR0WithType(
|
||||
ctx->builder(), shift_type, input_shape.dim_size(cur_axis));
|
||||
// Adjust large offsets into [0, axis_size). This also makes negative
|
||||
// offsets positive.
|
||||
offset = ((offset % axis_size) + axis_size) % axis_size;
|
||||
|
||||
// Stack two copies of the dimension, then slice from the calculated
|
||||
// offset.
|
||||
xla::XlaOp concat =
|
||||
xla::ConcatInDim(ctx->builder(), {output, output}, cur_axis);
|
||||
std::vector<xla::XlaOp> start_indices(
|
||||
input_shape.dims(), xla::Zero(ctx->builder(), shift_type));
|
||||
start_indices[cur_axis] = axis_size - offset;
|
||||
output =
|
||||
xla::DynamicSlice(concat, start_indices, input_shape.dim_sizes());
|
||||
}
|
||||
ctx->SetOutput(0, output);
|
||||
}
|
||||
|
||||
private:
|
||||
TF_DISALLOW_COPY_AND_ASSIGN(RollOp);
|
||||
};
|
||||
|
||||
REGISTER_XLA_OP(Name("Roll").CompileTimeConstantInput("axis"), RollOp);
|
||||
|
||||
} // namespace
|
||||
} // namespace tensorflow
|
Loading…
x
Reference in New Issue
Block a user