Mihai Maruseac c06650b697 Fix rendering of security advisories.
GitHub does not insert automatic links and smart code snippets in these files, so we have to do it manually.

PiperOrigin-RevId: 333195707
Change-Id: I1e2fed8ff207fbfce6eb8fb2b910d12bcab4100c
2020-09-22 17:56:00 -07:00

85 lines
3.6 KiB
Markdown

## TFSA-2020-005: Out of bounds access in TFLite operators
### CVE Number
CVE-2020-15211
### Impact
In TensorFlow Lite, saved models in the flatbuffer format use a double indexing
scheme: a model has a set of subgraphs, each subgraph has a set of operators and
each operator has a set of input/output tensors. The flatbuffer format uses
indices for the tensors, indexing into an array of tensors that is owned by the
subgraph. This results in a pattern of double array indexing when trying to
[get the data of each
tensor](https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/kernel_util.cc#L36):
```cc
return &context->tensors[node->inputs->data[index]];
```
However, some operators can have some tensors be optional. To handle this
scenario, the flatbuffer model uses a negative `-1` value as [index for these tensors](https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/c/common.h#L82):
```cc
#define kTfLiteOptionalTensor (-1)
```
This results in [special casing during validation at model loading
time](https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/core/subgraph.cc#L566-L580):
```cc
for (int i = 0; i < length; i++) {
int index = indices[i];
// Continue if index == kTfLiteOptionalTensor before additional comparisons
// below, size_t(-1) is always >= context_tensors_size.
if (index == kTfLiteOptionalTensor) {
continue;
}
if (index < 0 || static_cast<size_t>(index) >= context_.tensors_size) {
ReportError(
"Invalid tensor index %d in %s. The subgraph has %d tensors\n", index,
label, context_.tensors_size);
consistent_ = false;
return kTfLiteError;
}
}
```
Unfortunately, this means that the `-1` index is a valid tensor index for any
operator, including those that don't expect optional inputs and including for
output tensors. Thus, this allows writing and reading from outside the bounds of
heap allocated arrays, although only at a specific offset from the start of
these arrays.
This results in both read and write gadgets, albeit very limited in scope.
### Vulnerable Versions
TensorFlow 1.15.0, 1.15.1, 1.15.2, 1.15.3, 2.0.0, 2.0.1, 2.0.2, 2.1.0, 2.1.1,
2.2.0, 2.3.0.
### Patches
We have patched the issue in several commits
([46d5b0852](https://github.com/tensorflow/tensorflow/commit/46d5b0852),
[00302787b7](https://github.com/tensorflow/tensorflow/commit/00302787b7),
[e11f5558](https://github.com/tensorflow/tensorflow/commit/e11f5558),
[cd31fd0ce](https://github.com/tensorflow/tensorflow/commit/cd31fd0ce),
[1970c21](https://github.com/tensorflow/tensorflow/commit/1970c21), and
[fff2c83](https://github.com/tensorflow/tensorflow/commit/fff2c83)). We will
release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or
2.3.1.
### Workarounds
A potential workaround would be to add a custom `Verifier` to the model loading
code to ensure that only operators which accept optional inputs use the `-1`
special value and only for the tensors that they expect to be optional. Since
this allow-list type approach is erro-prone, we advise upgrading to the patched
code.
### For more information
Please consult [our security
guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for
more information regarding the security model and how to contact us with issues
and questions.
### Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo
360.