Update generated Python Op docs.

Change: 124868009
This commit is contained in:
A. Unique TensorFlower 2016-06-14 11:21:09 -08:00 committed by TensorFlower Gardener
parent 0060abbda6
commit ff3821ca25
3 changed files with 38 additions and 22 deletions

View File

@ -27,10 +27,11 @@ Concrete implementation of this class should provide following functions:
Initializes a BaseEstimator instance.
##### Parameters:
##### Args:
* <b>`model_dir`</b>: Directory to save model parameters, graph and etc.
* <b>`config`</b>: A RunConfig instance.
- - -
@ -293,16 +294,21 @@ Constructs an Estimator instance.
(depending on data passed to `fit`),
* `targets` are `Tensor` or
`dict` of `Tensor`s (for multi-head model).
* `mode` represents if this training, evaluation or prediction.
See `ModeKeys` for example keys.
* `params` is a `dict` of hyperparameters. Will receive what is
passed to Estimator in `params` parameter. This allows to
configure Estimators from hyper parameter tunning.
* `mode` represents if this training, evaluation or
prediction. See `ModeKeys` for example keys.
* `params` is a `dict` of hyperparameters. Will receive what
is passed to Estimator in `params` parameter. This allows
to configure Estimators from hyper parameter tunning.
* <b>`model_dir`</b>: Directory to save model parameters, graph and etc.
* <b>`config`</b>: Configuration object.
* <b>`params`</b>: `dict` of hyper parameters that will be passed into `model_fn`.
Keys are names of parameters, values are basic python types.
##### Raises:
* <b>`ValueError`</b>: parameters of `model_fn` don't match `params`.
- - -

View File

@ -6,14 +6,17 @@ Concrete implementation of this class should provide following functions:
* _get_predict_ops
`Estimator` implemented below is a good example of how to use this class.
Parameters:
model_dir: Directory to save model parameters, graph and etc.
- - -
#### `tf.contrib.learn.BaseEstimator.__init__(model_dir=None, config=None)` {#BaseEstimator.__init__}
Initializes a BaseEstimator instance.
##### Args:
* <b>`model_dir`</b>: Directory to save model parameters, graph and etc.
* <b>`config`</b>: A RunConfig instance.
- - -

View File

@ -1,32 +1,39 @@
Estimator class is the basic TensorFlow model trainer/evaluator.
- - -
Parameters:
model_fn: Model function, takes features and targets tensors or dicts of
#### `tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None)` {#Estimator.__init__}
Constructs an Estimator instance.
##### Args:
* <b>`model_fn`</b>: Model function, takes features and targets tensors or dicts of
tensors and returns predictions and loss tensors.
Supports next three signatures for the function:
* `(features, targets) -> (predictions, loss, train_op)`
* `(features, targets, mode) -> (predictions, loss, train_op)`
* `(features, targets, mode, params) ->
(predictions, loss, train_op)`
Where:
* <b>`Where`</b>:
* `features` are single `Tensor` or `dict` of `Tensor`s
(depending on data passed to `fit`),
* `targets` are `Tensor` or
`dict` of `Tensor`s (for multi-head model).
* `mode` represents if this training, evaluation or prediction.
See `ModeKeys` for example keys.
* `params` is a `dict` of hyperparameters. Will receive what is
passed to Estimator in `params` parameter. This allows to
configure Estimators from hyper parameter tunning.
model_dir: Directory to save model parameters, graph and etc.
config: Configuration object.
params: `dict` of hyper parameters that will be passed into `model_fn`.
* `mode` represents if this training, evaluation or
prediction. See `ModeKeys` for example keys.
* `params` is a `dict` of hyperparameters. Will receive what
is passed to Estimator in `params` parameter. This allows
to configure Estimators from hyper parameter tunning.
* <b>`model_dir`</b>: Directory to save model parameters, graph and etc.
* <b>`config`</b>: Configuration object.
* <b>`params`</b>: `dict` of hyper parameters that will be passed into `model_fn`.
Keys are names of parameters, values are basic python types.
- - -
#### `tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None)` {#Estimator.__init__}
##### Raises:
* <b>`ValueError`</b>: parameters of `model_fn` don't match `params`.
- - -