diff --git a/tensorflow/g3doc/api_docs/python/contrib.learn.md b/tensorflow/g3doc/api_docs/python/contrib.learn.md
index f5fe4dfb7c8..76243f56fcc 100644
--- a/tensorflow/g3doc/api_docs/python/contrib.learn.md
+++ b/tensorflow/g3doc/api_docs/python/contrib.learn.md
@@ -27,10 +27,11 @@ Concrete implementation of this class should provide following functions:
Initializes a BaseEstimator instance.
-##### Parameters:
+##### Args:
* `model_dir`: Directory to save model parameters, graph and etc.
+* `config`: A RunConfig instance.
- - -
@@ -293,16 +294,21 @@ Constructs an Estimator instance.
(depending on data passed to `fit`),
* `targets` are `Tensor` or
`dict` of `Tensor`s (for multi-head model).
- * `mode` represents if this training, evaluation or prediction.
- See `ModeKeys` for example keys.
- * `params` is a `dict` of hyperparameters. Will receive what is
- passed to Estimator in `params` parameter. This allows to
- configure Estimators from hyper parameter tunning.
+ * `mode` represents if this training, evaluation or
+ prediction. See `ModeKeys` for example keys.
+ * `params` is a `dict` of hyperparameters. Will receive what
+ is passed to Estimator in `params` parameter. This allows
+ to configure Estimators from hyper parameter tunning.
* `model_dir`: Directory to save model parameters, graph and etc.
* `config`: Configuration object.
* `params`: `dict` of hyper parameters that will be passed into `model_fn`.
Keys are names of parameters, values are basic python types.
+##### Raises:
+
+
+* `ValueError`: parameters of `model_fn` don't match `params`.
+
- - -
diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.BaseEstimator.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.BaseEstimator.md
index b29f52ca915..2d416c79b67 100644
--- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.BaseEstimator.md
+++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard2/tf.contrib.learn.BaseEstimator.md
@@ -6,14 +6,17 @@ Concrete implementation of this class should provide following functions:
* _get_predict_ops
`Estimator` implemented below is a good example of how to use this class.
-
-Parameters:
- model_dir: Directory to save model parameters, graph and etc.
- - -
#### `tf.contrib.learn.BaseEstimator.__init__(model_dir=None, config=None)` {#BaseEstimator.__init__}
+Initializes a BaseEstimator instance.
+##### Args:
+
+
+* `model_dir`: Directory to save model parameters, graph and etc.
+* `config`: A RunConfig instance.
- - -
diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.Estimator.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.Estimator.md
index d5a45103cfc..9e576094da2 100644
--- a/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.Estimator.md
+++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.learn.Estimator.md
@@ -1,32 +1,39 @@
Estimator class is the basic TensorFlow model trainer/evaluator.
+- - -
-Parameters:
- model_fn: Model function, takes features and targets tensors or dicts of
+#### `tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None)` {#Estimator.__init__}
+
+Constructs an Estimator instance.
+
+##### Args:
+
+
+* `model_fn`: Model function, takes features and targets tensors or dicts of
tensors and returns predictions and loss tensors.
Supports next three signatures for the function:
* `(features, targets) -> (predictions, loss, train_op)`
* `(features, targets, mode) -> (predictions, loss, train_op)`
* `(features, targets, mode, params) ->
(predictions, loss, train_op)`
- Where:
+* `Where`:
* `features` are single `Tensor` or `dict` of `Tensor`s
(depending on data passed to `fit`),
* `targets` are `Tensor` or
`dict` of `Tensor`s (for multi-head model).
- * `mode` represents if this training, evaluation or prediction.
- See `ModeKeys` for example keys.
- * `params` is a `dict` of hyperparameters. Will receive what is
- passed to Estimator in `params` parameter. This allows to
- configure Estimators from hyper parameter tunning.
- model_dir: Directory to save model parameters, graph and etc.
- config: Configuration object.
- params: `dict` of hyper parameters that will be passed into `model_fn`.
+ * `mode` represents if this training, evaluation or
+ prediction. See `ModeKeys` for example keys.
+ * `params` is a `dict` of hyperparameters. Will receive what
+ is passed to Estimator in `params` parameter. This allows
+ to configure Estimators from hyper parameter tunning.
+* `model_dir`: Directory to save model parameters, graph and etc.
+* `config`: Configuration object.
+* `params`: `dict` of hyper parameters that will be passed into `model_fn`.
Keys are names of parameters, values are basic python types.
-- - -
-#### `tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None)` {#Estimator.__init__}
+##### Raises:
+* `ValueError`: parameters of `model_fn` don't match `params`.
- - -