Merge changes from github.

END_PUBLIC

Note: this CL will break builds.  cl/159887762 to follow to fix all the breakages.

---
Commit 2336cdf7f authored by Maxwell Paul Brickner<mbrickn@users.noreply.github.com>
Committed by gunan<gunan@google.com>:
Updated link to use HTTPS (#10998)

Howdy!

I just updated a link to use https instead of http.

Thanks!
---
Commit ad0892df1 authored by Luke Iwanski<luke@codeplay.com>
Committed by Luke Iwanski<luke@codeplay.com>:
[OpenCL] Fixes run_metadata_test for SYCL

 This test is designed to test CUDA specific behavior

---
Commit 6b37a0725 authored by Todd Wang<toddwang@gmail.com>
Committed by GitHub<noreply@github.com>:
Update comments
---
Commit 1699d904a authored by John Lawson<john@codeplay.com>
Committed by Luke Iwanski<luke@codeplay.com>:
[OpenCL] Fixes CUDA specific test run on SYCL (#56)

The testBadParentValuesOnGPU should only be run on CUDA devices, as the
test checks for particular CUDA behaviour. We don't actually provide a
SYCL kernel for GatherTree and so it's not a problem that the tests
don't target SYCL.
---
Commit 3c1946230 authored by myPrecious<Moriadry@users.noreply.github.com>
Committed by Shanqing Cai<cais@google.com>:
Java API to get the size of specified input list of operations. (#10865)

* Java API to get the size of specified input list of operations

* remove unnecessary explain to avoid bring a new term to users.

---
Commit e911c7480 authored by Luke Iwanski<luke@codeplay.com>
Committed by Luke Iwanski<luke@codeplay.com>:
[OpenCL] REGISTER -> REGISTER6

---
Commit fbf6c4cec authored by superryanguo<superryanguo@gmail.com>
Committed by superryanguo<superryanguo@gmail.com>:
Simplify the Quickstart section with the weblink is better

---
Commit 72e2918cc authored by Taehoon Lee<taehoonlee@snu.ac.kr>
Committed by Taehoon Lee<taehoonlee@snu.ac.kr>:
Fix typos

---
Commit 90c4406b7 authored by Rishabh Patel<patelrishabh@users.noreply.github.com>
Committed by GitHub<noreply@github.com>:
Correct the learning rate as per the code snippet
---
Commit 03da61134 authored by Todd Wang<toddwang@gmail.com>
Committed by GitHub<noreply@github.com>:
Update ir_array.cc
---
Commit 2df6cd3ac authored by Todd Wang<toddwang@gmail.com>
Committed by GitHub<noreply@github.com>:
Another try
---
Commit af0cbace1 authored by Luke Iwanski<luke@codeplay.com>
Committed by Benoit Steiner<benoitsteiner@users.noreply.github.com>:
[OpenCL] Transpose to go through Eigen (#10321)

---
Commit fc7361081 authored by Luke Iwanski<luke@codeplay.com>
Committed by Benoit Steiner<benoitsteiner@users.noreply.github.com>:
[OpenCL] Registers RGBToHSV and HSVToRGB (#91) (#10848)

* [OpenCL] Added RGBToHSV and HSVToRGB

* Aligning '\'
---
Commit 832894ef8 authored by Luke Iwanski<luke@codeplay.com>
Committed by Benoit Steiner<benoitsteiner@users.noreply.github.com>:
[OpenCL] Registers AdjustContrastv2 (#10949)

* [OpenCL] Registers AdjustContrastv2 (#93)

* [OpenCL] Extended adjust_contrast_op_benchmark_test for OpenCL (#96)

* [OpenCL] Extended adjust_contrast_op_benchmark_test for OpenCL

* simplified to #ifndef

* Changed to "#if GOOGLE_CUDA"

* Update adjust_contrast_op_benchmark_test.cc

* Added comments

---
Commit cb4c2f8d1 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Make TransferBufferToInFeed not virual so it compiles.

---
Commit e89f04d80 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Fix calling Literal member functions.

---
Commit 15a8df724 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Fix mac build
clone from meheff's change:
[XLA] Change return type of DeviceAssignment::Deserialize to fix build
breakage on mac.
The mac build had the following error:

error: incomplete type 'xla::DeviceAssignment' used in type trait
expression

This was due to a static method returning a StatusOr<DeviceAssignment>
inside of the definition of DeviceAssignment.

---
Commit a54d43fa4 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Replace LiteralUtil to Literal in compiler/plugin/executor

---
Commit 88a6bb80c authored by Guenther Schmuelling<guschmue@microsoft.com>
Committed by Guenther Schmuelling<guschmue@microsoft.com>:
expand inline for debug builds to limit number of symbols

---
Commit 62fb49d31 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Fix visibility error for contrib/remote_fused_graph/pylib/BUILD.

---
Commit 4c75252f2 authored by Mark Neumann<markn@allenai.org>
Committed by Mark Neumann<markn@allenai.org>:
fix initial test values to avoid numerical instability

---
Commit b58d98353 authored by sj6077<epik03sj@gmail.com>
Committed by Benoit Steiner<benoitsteiner@users.noreply.github.com>:
Fixes of AutoParallel bug (#10368)

* Fix the bug that auto_parallel could replicate variable snapshot name

* Use NodeName in grappler:utils instead of substr, convert variables->variable_def of grappler item

* remove variable_def from grappler item, exclude snapshot nodes from dont_replicate_nodes in auto_parallel

---
Commit a286b7db8 authored by Yifei Feng<yifeif@google.com>
Committed by Yifei Feng<yifeif@google.com>:
Make debug_test slice integer.

---
Commit 97fcfdfa6 authored by Toby Boyd<tobyboyd@google.com>
Committed by GitHub<noreply@github.com>:
Fixed path to seq2seq.py and minor formatting
---
Commit 63c1befb8 authored by Anish Shah<shah.anish07@gmail.com>
Committed by Anish Shah<shah.anish07@gmail.com>:
Improve docs for tf.nn.depthwise_conv2d_native

---
Commit 8d42202b2 authored by Yong Tang<yong.tang.github@outlook.com>
Committed by Yong Tang<yong.tang.github@outlook.com>:
Fix mismatched delete in mkl_tfconv_op.cc

This fix fixes mismatched new[]-delete in mkl_tfconv_op.cc

(the file went through clang-format so there are some additional
changes)

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>

---
Commit 26301bd55 authored by Danny Goodman<goodman.danny@gmail.com>
Committed by Danny Goodman<goodman.danny@gmail.com>:
fix error format

---
Commit b3f33ad46 authored by Yao Zhang<yaozhang@google.com>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Make changes to prepare for the fused option of batch norm to be set to None (None means using fused batch norm if possible).

PiperOrigin-RevId: 159649743

---
Commit a4a469832 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
[XLA] Add tests for select ops and while loops that produce tuples that contain predicates.

PiperOrigin-RevId: 159645900

---
Commit 980d3f2be authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Use C API to implement Operation.name property

This name property is used in many existing tests including those that
already run with C API enabled (math_ops_test, framework_ops_test,
session_test, session_partial_run_test, math_ops_test_gpu, etc).

PiperOrigin-RevId: 159645767

---
Commit 26239c706 authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
Previously we didn't have an implementation of BatchNormInference and BatchNormTraining, which gives a linker error if anyone ever tries to call that. A dummy implementation is friendlier than a linker error.

PiperOrigin-RevId: 159645612

---
Commit f671c5caa authored by A. Unique TensorFlower<gardener@tensorflow.org>
Committed by TensorFlower Gardener<gardener@tensorflow.org>:
BEGIN_PUBLIC
Automated g4 rollback of changelist 159570549

PiperOrigin-RevId: 160182040
This commit is contained in:
A. Unique TensorFlower 2017-06-26 12:54:12 -07:00 committed by TensorFlower Gardener
parent 0b9b09a853
commit f3c89936e9
290 changed files with 5722 additions and 1723 deletions

View File

@ -159,7 +159,12 @@ There are two ways to run TensorFlow unit tests.
bazel test ${flags} //tensorflow/python/...
```
2. Using Docker and TensorFlow's CI scripts.
2. Using [Docker](www.docker.com) and TensorFlow's CI scripts.
```bash
# Install Docker first, then this will build and run cpu tests
tensorflow/tools/ci_build/ci_build.sh CPU bazel test //tensorflow/...
```
See
[TensorFlow Builds](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/ci_build) for details.

View File

@ -6,6 +6,7 @@ If you open a GitHub issue, here is our policy:
1. It must be a bug or a feature request.
2. The form below must be filled out.
3. It shouldn't be a TensorBoard issue. Those go [here](https://github.com/tensorflow/tensorflow/issues).
**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.

View File

@ -34,13 +34,13 @@ and discussion.**
People who are a little more adventurous can also try our nightly binaries:
* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc2-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc2-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc2-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc2-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc2-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc2-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc2-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0rc2-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
* Mac GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc2-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0rc2-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/))
* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0rc2-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0rc2-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/))
* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0rc2-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0rc2-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/))
* Android: [demo APK](https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/tensorflow_demo.apk), [native libs](http://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/native/)
* Linux CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=cpu-slave)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=cpu-slave/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-python35-linux-cpu/))
* Linux GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-linux/)) / [Python 3.4](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0-cp34-cp34m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-linux/)) / [Python 3.5](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0-cp35-cp35m-linux_x86_64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-linux-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3.5,label=gpu-linux/))
* Mac CPU-only: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=mac-slave/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow-1.2.0-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-cpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=mac-slave/))
* Mac GPU: [Python 2](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0-py2-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON2,label=gpu-mac/)) / [Python 3](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/lastSuccessfulBuild/artifact/pip_test/whl/tensorflow_gpu-1.2.0-py3-none-any.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-matrix-mac-gpu/TF_BUILD_IS_OPT=OPT,TF_BUILD_IS_PIP=PIP,TF_BUILD_PYTHON_VERSION=PYTHON3,label=gpu-mac/))
* Windows CPU-only: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow-1.2.0-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows,PY=36/))
* Windows GPU: [Python 3.5 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0-cp35-cp35m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=35/)) / [Python 3.6 64-bit](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/lastSuccessfulBuild/artifact/cmake_build/tf_python/dist/tensorflow_gpu-1.2.0-cp36-cp36m-win_amd64.whl) ([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-win/M=windows-gpu,PY=36/))
* Android: [demo APK](https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/tensorflow_demo.apk), [native libs](https://ci.tensorflow.org/view/Nightly/job/nightly-android/lastSuccessfulBuild/artifact/out/native/)
([build history](https://ci.tensorflow.org/view/Nightly/job/nightly-android/))
#### *Try your first TensorFlow program*

View File

@ -113,6 +113,8 @@
checkpoints containing such RNN cells, in which case you can use the
[checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
to convert the variable names in your old checkpoints.
* Added `tf.contrib.kernel_methods` module with Ops and estimators for primal
(explicit) kernel methods in TensorFlow.
## Bug Fixes and Other Changes
* In python, `Operation.get_attr` on type attributes returns the Python DType

6
configure vendored
View File

@ -162,8 +162,12 @@ bazel version > bazel.version
curr_bazel_version=$(head -n 1 bazel.version | cut -d ' ' -f3)
rm -f bazel.version
echo "You have bazel $curr_bazel_version installed."
if [ "$(version "$MIN_BAZEL_VERSION")" -gt "$(version "$curr_bazel_version")" ]; then
if [ -z "$curr_bazel_version" ]; then
echo "WARNING: current bazel installation is not a release version."
echo "Make sure you are running at least bazel $MIN_BAZEL_VERSION."
elif [ "$(version "$MIN_BAZEL_VERSION")" -gt "$(version "$curr_bazel_version")" ]; then
echo "Please upgrade your bazel installation to version $MIN_BAZEL_VERSION or higher to build TensorFlow!"
echo "Exiting..."
exit 1

View File

@ -26,7 +26,7 @@ usage() {
[ $# == 0 ] && usage && exit 0
# read the options
ARGS=`getopt -o p:v:h --long prefix:,version:,help -n $0 -- "$@"`
ARGS=$(getopt -o p:v:h --long prefix:,version:,help -n $0 -- "$@")
eval set -- "$ARGS"
# extract options and their arguments into variables.

View File

@ -472,10 +472,23 @@ cc_binary(
name = "tutorials_example_trainer",
srcs = ["tutorials/example_trainer.cc"],
copts = tf_copts(),
linkopts = [
"-lpthread",
"-lm",
],
linkopts = select({
"//tensorflow:windows": [],
"//tensorflow:windows_msvc": [],
"//tensorflow:darwin": [
"-lm",
"-lpthread",
],
"//tensorflow:ios": [
"-lm",
"-lpthread",
],
"//conditions:default": [
"-lm",
"-lpthread",
"-lrt",
],
}),
deps = [
":cc_ops",
"//tensorflow/core:core_cpu",

View File

@ -162,6 +162,32 @@ Status Log1pGrad(const Scope& scope, const Operation& op,
}
REGISTER_GRADIENT_OP("Log1p", Log1pGrad);
Status SinhGrad(const Scope& scope, const Operation& op,
const std::vector<Output>& grad_inputs,
std::vector<Output>* grad_outputs) {
// y = sinh(x)
// dy/dx = cosh(x)
auto dydx = Cosh(scope, op.input(0));
// grad(x) = grad(y) * conj(dy/dx)
grad_outputs->push_back(
Mul(scope, grad_inputs[0], ConjugateHelper(scope, dydx)));
return scope.status();
}
REGISTER_GRADIENT_OP("Sinh", SinhGrad);
Status CoshGrad(const Scope& scope, const Operation& op,
const std::vector<Output>& grad_inputs,
std::vector<Output>* grad_outputs) {
// y = cosh(x)
// dy/dx = sinh(x)
auto dydx = Sinh(scope, op.input(0));
// grad(x) = grad(y) * conj(dy/dx)
grad_outputs->push_back(
Mul(scope, grad_inputs[0], ConjugateHelper(scope, dydx)));
return scope.status();
}
REGISTER_GRADIENT_OP("Cosh", CoshGrad);
Status TanhGrad(const Scope& scope, const Operation& op,
const std::vector<Output>& grad_inputs,
std::vector<Output>* grad_outputs) {

View File

@ -45,6 +45,8 @@ class CWiseUnaryGradTest : public ::testing::Test {
EXPM1,
LOG,
LOG1P,
SINH,
COSH,
TANH,
SIGMOID,
SIGN,
@ -111,6 +113,12 @@ class CWiseUnaryGradTest : public ::testing::Test {
case LOG1P:
y = Log1p(scope_, x);
break;
case SINH:
y = Sinh(scope_, x);
break;
case COSH:
y = Cosh(scope_, x);
break;
case TANH:
y = Tanh(scope_, x);
break;
@ -337,6 +345,50 @@ TEST_F(CWiseUnaryGradTest, Log1p_Complex) {
TestCWiseGrad<complex64>(LOG1P, x_fn, dy_fn, dx_fn);
}
TEST_F(CWiseUnaryGradTest, Sinh) {
auto x_fn = [this](const int i) { return RV({0, -1, 1, -2, 2, -3, 3}); };
auto dy_fn = [this](const float x) { return x + RV({-2, 2, -3, 3, -4, 4}); };
auto dx_fn = [this](const float x, const float dy) {
return dy * std::cosh(x);
};
TestCWiseGrad<float>(SINH, x_fn, dy_fn, dx_fn);
}
TEST_F(CWiseUnaryGradTest, Sinh_Complex) {
auto x_fn = [this](const int i) {
return CRV({{1, 0}, {0, 1}, {2, -1}, {1, 2}, {3, 4}});
};
auto dy_fn = [this](const complex64& x) {
return x + CRV({{-2, 2}, {-3, 3}, {1, -4}});
};
auto dx_fn = [this](const complex64& x, const complex64& dy) {
return dy * conjugate(std::cosh(x));
};
TestCWiseGrad<complex64>(SINH, x_fn, dy_fn, dx_fn);
}
TEST_F(CWiseUnaryGradTest, Cosh) {
auto x_fn = [this](const int i) { return RV({0, -1, 1, -2, 2, -3, 3}); };
auto dy_fn = [this](const float x) { return x + RV({-2, 2, -3, 3, -4, 4}); };
auto dx_fn = [this](const float x, const float dy) {
return dy * std::sinh(x);
};
TestCWiseGrad<float>(COSH, x_fn, dy_fn, dx_fn);
}
TEST_F(CWiseUnaryGradTest, Cosh_Complex) {
auto x_fn = [this](const int i) {
return CRV({{1, 0}, {0, 1}, {2, -1}, {1, 2}, {3, 4}});
};
auto dy_fn = [this](const complex64& x) {
return x + CRV({{-2, 2}, {-3, 3}, {1, -4}});
};
auto dx_fn = [this](const complex64& x, const complex64& dy) {
return dy * conjugate(std::sinh(x));
};
TestCWiseGrad<complex64>(COSH, x_fn, dy_fn, dx_fn);
}
TEST_F(CWiseUnaryGradTest, Tanh) {
auto x_fn = [this](const int i) { return RV({0, -1, 1, -2, 2, -3, 3}); };
auto dy_fn = [this](const float x) { return x + RV({-2, 2, -3, 3, -4, 4}); };

View File

@ -46,6 +46,19 @@ Status SoftmaxGrad(const Scope& scope, const Operation& op,
}
REGISTER_GRADIENT_OP("Softmax", SoftmaxGrad);
Status LogSoftmaxGrad(const Scope& scope, const Operation& op,
const std::vector<Output>& grad_inputs,
std::vector<Output>* grad_outputs) {
auto softmax = Exp(scope, op.output(0));
auto sum = Sum(scope, grad_inputs[0], {1}, Sum::KeepDims(true));
auto mul = Mul(scope, sum, softmax);
auto dx = Sub(scope, grad_inputs[0], mul);
grad_outputs->push_back(dx);
return scope.status();
}
REGISTER_GRADIENT_OP("LogSoftmax", LogSoftmaxGrad);
Status ReluGradHelper(const Scope& scope, const Operation& op,
const std::vector<Output>& grad_inputs,
std::vector<Output>* grad_outputs) {

View File

@ -57,6 +57,19 @@ TEST_F(NNGradTest, SoftmaxGrad) {
RunTest(x, shape, y, shape);
}
TEST_F(NNGradTest, LogSoftmaxGrad) {
TensorShape shape({5, 3});
auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(shape));
auto y = LogSoftmax(scope_, x);
// Avoid numerical instability when computing finite differences.
Tensor x_init_value = test::AsTensor<float>(
{-0.9f, -0.7f, -0.5f, -0.3f, -0.1f,
0.1f, 0.3f, 0.5f, 0.7f, 0.8f,
-0.1f, 0.1f, 0.1f, 0.1f, 1.2f},
{5, 3});
RunTest(x, x_init_value, y, shape);
}
TEST_F(NNGradTest, ReluGrad) {
TensorShape shape({5, 2});
auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(shape));

View File

@ -32,5 +32,7 @@ package(
cc_library(
name = "plugin",
deps = [],
deps = [
"//tensorflow/compiler/plugin/executor:plugin_lib",
],
)

View File

@ -0,0 +1,32 @@
licenses(["restricted"])
package(default_visibility = ["//visibility:public"])
cc_library(
name = "plugin_lib",
srcs = glob([
"*.cc",
]),
hdrs = glob([
"*.h",
]),
deps = [
"//tensorflow/compiler/jit:xla_jit_headers_lib",
"//tensorflow/compiler/xla:xla_headers_lib",
"//tensorflow/compiler/xla/service:hlo_evaluator",
"//third_party/eigen3",
"@local_config_cuda//cuda:cuda_headers",
"@protobuf//:protobuf_headers",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
)

View File

@ -0,0 +1,123 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdlib.h>
#include <fstream>
#include "tensorflow/compiler/plugin/executor/compiler.h"
#include "tensorflow/compiler/plugin/executor/executable.h"
#include "tensorflow/compiler/xla/service/algebraic_simplifier.h"
#include "tensorflow/compiler/xla/service/flatten_call_graph.h"
#include "tensorflow/compiler/xla/service/hlo_constant_folding.h"
#include "tensorflow/compiler/xla/service/hlo_cse.h"
#include "tensorflow/compiler/xla/service/hlo_dce.h"
#include "tensorflow/compiler/xla/service/hlo_pass_fix.h"
#include "tensorflow/compiler/xla/service/hlo_pass_pipeline.h"
#include "tensorflow/compiler/xla/service/hlo_subcomputation_unification.h"
#include "tensorflow/compiler/xla/service/inliner.h"
#include "tensorflow/compiler/xla/service/reshape_mover.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/stream_executor/lib/initialize.h"
#include "tensorflow/stream_executor/lib/strcat.h"
#include "tensorflow/core/lib/core/errors.h"
namespace se = ::perftools::gputools;
namespace sep = ::perftools::gputools::executorplugin;
namespace port = ::perftools::gputools::port;
namespace xla {
namespace executorplugin {
/*
* Run optimization passes on the module. The graph is transformed by
* each pass in the optimization pipeline. The service subdirectory
* contains useful optimization passes.
*/
Status ExecutorCompiler::RunHloOptimization(HloModule* hlo_module,
HloDumper dump_hlo) {
HloPassPipeline pipeline("Executor", dump_hlo);
pipeline.AddPass<Inliner>();
pipeline.AddPass<HloSubcomputationUnification>();
pipeline.AddPass<HloCSE>(false);
pipeline.AddPass<HloPassFix<AlgebraicSimplifier>>(
false, [](const Shape&, const Shape&) { return false; });
pipeline.AddPass<ReshapeMover>();
pipeline.AddPass<HloConstantFolding>();
pipeline.AddPass<HloCSE>(true);
pipeline.AddPass<HloDCE>();
pipeline.AddPass<FlattenCallGraph>();
return pipeline.Run(hlo_module).status();
}
StatusOr<std::unique_ptr<Executable>> ExecutorCompiler::Compile(
std::unique_ptr<HloModule> hlo_module, HloDumper dump_hlo,
se::StreamExecutor* stream_exec) {
TF_RET_CHECK(stream_exec != nullptr);
VLOG(1) << "Generate graph " << hlo_module->name();
TF_RETURN_IF_ERROR(RunHloOptimization(hlo_module.get(), dump_hlo));
// Typically you would visit the HLO graph, building up a compiled equivalent
// In this case we are using an Hlo evaluator at execution time, so we don't
// need to compile anything
// Create executable from only the Hlo module
std::unique_ptr<Executable> executable;
executable.reset(new ExecutorExecutable(std::move(hlo_module)));
return std::move(executable);
}
StatusOr<std::vector<std::unique_ptr<Executable>>> ExecutorCompiler::Compile(
std::vector<std::unique_ptr<HloModule>> hlo_modules,
HloDumper dump_hlos, std::vector<se::StreamExecutor*> stream_execs) {
return tensorflow::errors::Unimplemented(
"Compilation of multiple HLO modules is not supported on Executor.");
}
StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>>
ExecutorCompiler::CompileAheadOfTime(
std::vector<std::unique_ptr<HloModule>> hlo_modules,
HloDumper dump_hlo, const AotCompilationOptions& aot_options) {
return tensorflow::errors::InvalidArgument(
"AOT compilation not supported on Executor");
}
se::Platform::Id ExecutorCompiler::PlatformId() const {
return sep::kExecutorPlatformId;
}
HloCostAnalysis::ShapeSizeFunction
ExecutorCompiler::ShapeSizeBytesFunction() const {
return ExecutorExecutable::ShapeSizeBytes;
}
} // namespace executorplugin
} // namespace xla
REGISTER_MODULE_INITIALIZER(executor_compiler, {
xla::Compiler::RegisterCompilerFactory(sep::kExecutorPlatformId, []() {
return xla::MakeUnique<xla::executorplugin::ExecutorCompiler>();
});
});

View File

@ -0,0 +1,64 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_EXECUTOR_COMPILER_H_
#define TENSORFLOW_COMPILER_EXECUTOR_COMPILER_H_
#include <memory>
#include "tensorflow/compiler/xla/service/compiler.h"
#include "tensorflow/compiler/xla/service/executable.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/hlo_module_config.h"
#include "tensorflow/compiler/plugin/executor/platform_id.h"
namespace xla {
namespace executorplugin {
class ExecutorCompiler : public Compiler {
public:
ExecutorCompiler() {}
~ExecutorCompiler() override {}
StatusOr<std::unique_ptr<Executable>> Compile(
std::unique_ptr<HloModule> hlo_module,
HloDumper dump_hlo,
perftools::gputools::StreamExecutor* stream_exec) override;
StatusOr<std::vector<std::unique_ptr<Executable>>> Compile(
std::vector<std::unique_ptr<HloModule>> hlo_module,
HloDumper dump_hlo,
std::vector<perftools::gputools::StreamExecutor*> stream_exec) override;
StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>>
CompileAheadOfTime(
std::vector<std::unique_ptr<HloModule>> module,
HloDumper dump_hlo, const AotCompilationOptions& options) override;
HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const override;
perftools::gputools::Platform::Id PlatformId() const override;
private:
Status RunHloOptimization(HloModule* hlo_module, HloDumper dump_hlo);
TF_DISALLOW_COPY_AND_ASSIGN(ExecutorCompiler);
};
} // namespace executorplugin
} // namespace xla
#endif // TENSORFLOW_COMPILER_EXECUTOR_COMPILER_H_

View File

@ -0,0 +1,60 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/jit/kernels/xla_device_launch_op.h"
#include "tensorflow/compiler/jit/xla_device.h"
#include "tensorflow/compiler/jit/xla_device_ops.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
namespace tensorflow {
const char* const DEVICE_XLA_EXEC = "XLA_EXEC";
const char* const DEVICE_EXEC_XLA_JIT = "XLA_EXEC_JIT";
constexpr std::array<DataType, 5> kExecAllTypes = {
{DT_INT32, DT_FLOAT, DT_BOOL, DT_DOUBLE, DT_INT64}};
class XlaExaDeviceFactory : public DeviceFactory {
public:
Status CreateDevices(const SessionOptions& options, const string& name_prefix,
std::vector<Device*>* devices) override;
};
Status XlaExaDeviceFactory::CreateDevices(const SessionOptions& options,
const string& name_prefix,
std::vector<Device*>* devices) {
static XlaDeviceOpRegistrations* registrations =
RegisterXlaDeviceKernels(DEVICE_XLA_EXEC, DEVICE_EXEC_XLA_JIT);
(void)registrations;
std::unique_ptr<XlaDevice> device;
TF_RETURN_IF_ERROR(XlaDevice::Create("Executor", DEVICE_XLA_EXEC, 0,
DEVICE_EXEC_XLA_JIT, options,
name_prefix, &device));
devices->push_back(device.release());
return Status::OK();
}
REGISTER_LOCAL_DEVICE_FACTORY(DEVICE_XLA_EXEC, XlaExaDeviceFactory, 110);
// Kernel registrations
static bool OpFilter(KernelDef* kdef) { return true; }
REGISTER_XLA_LAUNCH_KERNEL(DEVICE_XLA_EXEC, XlaDeviceLaunchOp, kExecAllTypes);
REGISTER_XLA_DEVICE_KERNELS(DEVICE_XLA_EXEC, kExecAllTypes);
REGISTER_XLA_BACKEND(DEVICE_EXEC_XLA_JIT, kExecAllTypes, OpFilter);
} // namespace tensorflow

View File

@ -0,0 +1,147 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/plugin/executor/executable.h"
#include "tensorflow/compiler/plugin/executor/executor.h"
#include "tensorflow/compiler/xla/service/hlo_evaluator.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
namespace se = ::perftools::gputools;
namespace sep = ::perftools::gputools::executorplugin;
namespace xla {
namespace executorplugin {
ExecutorExecutable::ExecutorExecutable(std::unique_ptr<HloModule> hlo_module)
: Executable(std::move(hlo_module), ShapeSizeBytes) {}
ExecutorExecutable::~ExecutorExecutable() {}
static se::DeviceMemoryBase AllocateSingleOutput(sep::ExecutorExecutor* executor,
const Literal& literal) {
int64 size(xla::ShapeUtil::ByteSizeOf(literal.shape()));
void* buf = executor->Allocate(size);
const void* src = literal.InternalData();
memcpy(buf, src, size);
return se::DeviceMemoryBase(buf, size);
}
static se::DeviceMemoryBase AllocateOutputBuffer(sep::ExecutorExecutor* executor,
const Literal& literal) {
const Shape& shape = literal.shape();
if (shape.element_type() != xla::TUPLE) {
return AllocateSingleOutput(executor, literal);
} else {
int64 size(xla::ShapeUtil::ByteSizeOf(shape, sizeof(void*)));
void** buf = reinterpret_cast<void**>(executor->Allocate(size));
for (int64 n = 0; n < xla::ShapeUtil::TupleElementCount(shape); n++) {
se::DeviceMemoryBase out =
AllocateSingleOutput(executor, literal.tuple_literals(n));
*buf++ = out.opaque();
}
return se::DeviceMemoryBase(buf, size);
}
}
StatusOr<se::DeviceMemoryBase> ExecutorExecutable::ExecuteOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<se::DeviceMemoryBase> arguments,
HloExecutionProfile* hlo_execution_profile) {
se::Stream* stream = run_options->stream();
VLOG(1) << "Execute " << module().name();
if (VLOG_IS_ON(2)) {
for (const auto& a : arguments) {
VLOG(2) << "-- argument " << a.opaque();
}
}
uint64 start_micros = tensorflow::Env::Default()->NowMicros();
HloComputation* computation = module().entry_computation();
if (computation->num_parameters() != arguments.size()) {
return tensorflow::errors::Internal(
"Mismatch between argument count and graph parameter count.");
}
// Create the arguments as an vector of XLA literals
std::vector<std::unique_ptr<Literal>> arg_literals;
std::vector<Literal*> arg_literals_ptrs;
for (int64 p = 0; p < computation->num_parameters(); p++) {
// Create the input literal for the parameter
HloInstruction* param = computation->parameter_instruction(p);
arg_literals.emplace_back(Literal::CreateFromShape(param->shape()));
arg_literals_ptrs.push_back(arg_literals.back().get());
// Copy in the data from the stream_executor buffers
void* buffer = arg_literals.back().get()->MutableInternalData();
memcpy(buffer, arguments[p].opaque(),
ShapeUtil::ByteSizeOf(param->shape()));
}
// Execute the graph using the evaluator
HloEvaluator evaluator;
std::unique_ptr<Literal> output;
TF_ASSIGN_OR_RETURN(output,
evaluator.Evaluate(computation, arg_literals_ptrs));
// Copy the result into the return buffer
perftools::gputools::StreamExecutor* executor(stream->parent());
sep::ExecutorExecutor* executorExecutor(
static_cast<sep::ExecutorExecutor*>(executor->implementation()));
se::DeviceMemoryBase ret =
AllocateOutputBuffer(executorExecutor, *(output.get()));
uint64 end_micros = tensorflow::Env::Default()->NowMicros();
{
tensorflow::mutex_lock lock(mutex_);
const double nanoseconds = (end_micros - start_micros) * 1000.0;
execution_profile_.set_compute_time_ns(std::max(nanoseconds, 1.0));
}
return ret;
}
StatusOr<std::unique_ptr<ShapedBuffer>> ExecutorExecutable::ExecuteOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments,
HloExecutionProfile* hlo_execution_profile) {
return tensorflow::errors::Unimplemented(
"ExecuteOnStream is not yet supported on Executor.");
}
StatusOr<se::DeviceMemoryBase> ExecutorExecutable::ExecuteAsyncOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<se::DeviceMemoryBase> arguments) {
return tensorflow::errors::Unimplemented(
"ExecuteAsyncOnStream is not yet supported on Executor.");
}
/*static*/ int64 ExecutorExecutable::ShapeSizeBytes(const Shape& shape) {
if (ShapeUtil::IsOpaque(shape)) {
return sizeof(void*);
}
return ShapeUtil::ByteSizeOf(shape, sizeof(void*));
}
} // namespace executorplugin
} // namespace xla

View File

@ -0,0 +1,65 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_EXECUTABLE_H_
#define TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_EXECUTABLE_H_
#include <cstddef>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "tensorflow/compiler/xla/service/executable.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/hlo_module_config.h"
#include "tensorflow/stream_executor/lib/status.h"
#include "tensorflow/stream_executor/lib/statusor.h"
namespace xla {
namespace executorplugin {
class ExecutorExecutable : public Executable {
public:
ExecutorExecutable(std::unique_ptr<HloModule> hlo_module);
~ExecutorExecutable() override;
StatusOr<perftools::gputools::DeviceMemoryBase> ExecuteOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<perftools::gputools::DeviceMemoryBase>
arguments,
HloExecutionProfile* hlo_execution_profile) override;
StatusOr<std::unique_ptr<ShapedBuffer>> ExecuteOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<const ShapedBuffer*> arguments,
HloExecutionProfile* hlo_execution_profile) override;
StatusOr<perftools::gputools::DeviceMemoryBase> ExecuteAsyncOnStream(
const ServiceExecutableRunOptions* run_options,
tensorflow::gtl::ArraySlice<perftools::gputools::DeviceMemoryBase>
arguments) override;
static int64 ShapeSizeBytes(const Shape& shape);
private:
TF_DISALLOW_COPY_AND_ASSIGN(ExecutorExecutable);
};
} // namespace executorplugin
} // namespace xla
#endif // TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_EXECUTABLE_H_

View File

@ -0,0 +1,135 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/plugin/executor/executor.h"
#include "tensorflow/compiler/plugin/executor/platform_id.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include <stdlib.h>
#include <string.h>
namespace se = ::perftools::gputools;
namespace perftools {
namespace gputools {
namespace executorplugin {
host::HostStream *AsExecutorStream(Stream *stream) {
DCHECK(stream != nullptr);
return dynamic_cast<host::HostStream *>(stream->implementation());
}
ExecutorExecutor::ExecutorExecutor(const PluginConfig &plugin_config)
: plugin_config_(plugin_config) {}
ExecutorExecutor::~ExecutorExecutor() {}
void *ExecutorExecutor::Allocate(uint64 size) {
void *buf = new char[size];
return buf;
}
void *ExecutorExecutor::AllocateSubBuffer(DeviceMemoryBase *parent,
uint64 offset_bytes,
uint64 size_bytes) {
return parent + offset_bytes;
}
void ExecutorExecutor::Deallocate(DeviceMemoryBase *mem) {
if (!mem->is_sub_buffer()) {
delete[] static_cast<char *>(mem->opaque());
}
}
bool ExecutorExecutor::Memcpy(Stream *stream, void *host_dst,
const DeviceMemoryBase &dev_src, uint64 size) {
AsExecutorStream(stream)->EnqueueTask([this, host_dst, dev_src, size]() {
port::Status ok = SynchronousMemcpy(host_dst, dev_src, size);
});
return true;
}
bool ExecutorExecutor::Memcpy(Stream *stream, DeviceMemoryBase *dev_dst,
const void *host_src, uint64 size) {
AsExecutorStream(stream)->EnqueueTask([this, dev_dst, host_src, size]() {
port::Status ok = SynchronousMemcpy(dev_dst, host_src, size);
});
return true;
}
port::Status ExecutorExecutor::SynchronousMemcpy(DeviceMemoryBase *dev_dst,
const void *host_src,
uint64 size) {
memcpy(dev_dst->opaque(), host_src, size);
return port::Status::OK();
}
port::Status ExecutorExecutor::SynchronousMemcpy(void *host_dst,
const DeviceMemoryBase &dev_src,
uint64 size) {
memcpy(host_dst, dev_src.opaque(), size);
return port::Status::OK();
}
bool ExecutorExecutor::HostCallback(Stream *stream,
std::function<void()> callback) {
AsExecutorStream(stream)->EnqueueTask(callback);
return true;
}
bool ExecutorExecutor::CreateStreamDependency(Stream *dependent, Stream *other) {
AsExecutorStream(dependent)->EnqueueTask(
[other]() { other->BlockHostUntilDone(); });
AsExecutorStream(dependent)->BlockUntilDone();
return true;
}
bool ExecutorExecutor::StartTimer(Stream *stream, Timer *timer) {
dynamic_cast<host::HostTimer *>(timer->implementation())->Start(stream);
return true;
}
bool ExecutorExecutor::StopTimer(Stream *stream, Timer *timer) {
dynamic_cast<host::HostTimer *>(timer->implementation())->Stop(stream);
return true;
}
bool ExecutorExecutor::BlockHostUntilDone(Stream *stream) {
AsExecutorStream(stream)->BlockUntilDone();
return true;
}
DeviceDescription *ExecutorExecutor::PopulateDeviceDescription() const {
internal::DeviceDescriptionBuilder builder;
builder.set_device_address_bits(64);
builder.set_name("Executor");
builder.set_device_vendor("VectorName");
builder.set_platform_version("1.0");
builder.set_driver_version("1.0");
builder.set_runtime_version("1.0");
builder.set_pci_bus_id("1");
builder.set_device_memory_size(static_cast<uint64>(4) * 1024 * 1024 * 1024);
builder.set_clock_rate_ghz(static_cast<float>(CLOCKS_PER_SEC) / 1e9);
auto built = builder.Build();
return built.release();
}
} // namespace executorplugin
} // namespace gputools
} // namespace perftools

View File

@ -0,0 +1,213 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Declares the ExecutorExecutor class, which is a CPU-only implementation of
// the StreamExecutor interface. For now, this is used for testing and to
// examine the performance of host-based StreamExecutor code.
#ifndef TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_EXECUTOR_H_
#define TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_EXECUTOR_H_
#include "tensorflow/stream_executor/host/host_stream.h"
#include "tensorflow/stream_executor/host/host_timer.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/stream_executor/blas.h"
#include "tensorflow/stream_executor/lib/error.h"
#include "tensorflow/stream_executor/lib/status.h"
#include "tensorflow/stream_executor/lib/statusor.h"
#include "tensorflow/stream_executor/rng.h"
#include "tensorflow/stream_executor/stream_executor.h"
#include "tensorflow/stream_executor/stream_executor_internal.h"
#include <list>
#include <mutex>
namespace perftools {
namespace gputools {
namespace executorplugin {
using Args = tensorflow::gtl::ArraySlice<DeviceMemoryBase>;
class ExecutorExecutor : public internal::StreamExecutorInterface {
public:
explicit ExecutorExecutor(const PluginConfig &plugin_config);
~ExecutorExecutor() override;
port::Status Init(int device_ordinal, DeviceOptions device_options) override {
return port::Status::OK();
}
bool GetKernel(const MultiKernelLoaderSpec &spec,
KernelBase *kernel) override {
return false;
}
bool Launch(Stream *stream, const ThreadDim &thread_dims,
const BlockDim &block_dims, const KernelBase &kernel,
const KernelArgsArrayBase &args) override {
return false;
}
void *Allocate(uint64 size) override;
void *AllocateSubBuffer(DeviceMemoryBase *mem, uint64 offset_bytes,
uint64 size_bytes) override;
void Deallocate(DeviceMemoryBase *mem) override;
void *HostMemoryAllocate(uint64 size) override { return new char[size]; }
void HostMemoryDeallocate(void *mem) override {
delete[] static_cast<char *>(mem);
}
bool HostMemoryRegister(void *mem, uint64 size) override { return true; }
bool HostMemoryUnregister(void *mem) override { return true; }
bool Memcpy(Stream *stream, void *host_dst, const DeviceMemoryBase &pop_src,
uint64 size) override;
bool Memcpy(Stream *stream, DeviceMemoryBase *pop_dst, const void *host_src,
uint64 size) override;
bool MemcpyDeviceToDevice(Stream *stream, DeviceMemoryBase *pop_dst,
const DeviceMemoryBase &host_src,
uint64 size) override {
return false;
}
bool MemZero(Stream *stream, DeviceMemoryBase *location,
uint64 size) override {
return false;
}
bool Memset(Stream *stream, DeviceMemoryBase *location, uint8 pattern,
uint64 size) override {
return false;
}
bool Memset32(Stream *stream, DeviceMemoryBase *location, uint32 pattern,
uint64 size) override {
return false;
}
// No "synchronize all activity" implemented for this platform at the moment.
bool SynchronizeAllActivity() override { return false; }
bool SynchronousMemZero(DeviceMemoryBase *location, uint64 size) override {
return false;
}
bool SynchronousMemSet(DeviceMemoryBase *location, int value,
uint64 size) override {
return false;
}
port::Status SynchronousMemcpy(DeviceMemoryBase *pop_dst,
const void *host_src, uint64 size) override;
port::Status SynchronousMemcpy(void *host_dst,
const DeviceMemoryBase &pop_src,
uint64 size) override;
port::Status SynchronousMemcpyDeviceToDevice(DeviceMemoryBase *pop_dst,
const DeviceMemoryBase &pop_src,
uint64 size) override {
return port::Status{port::error::UNIMPLEMENTED, ""};
}
bool HostCallback(Stream *stream, std::function<void()> callback) override;
port::Status AllocateEvent(Event *event) override {
return port::Status{port::error::UNIMPLEMENTED, ""};
}
port::Status DeallocateEvent(Event *event) override {
return port::Status{port::error::UNIMPLEMENTED, ""};
}
port::Status RecordEvent(Stream *stream, Event *event) override {
return port::Status{port::error::UNIMPLEMENTED, ""};
}
port::Status WaitForEvent(Stream *stream, Event *event) override {
return port::Status{port::error::UNIMPLEMENTED, ""};
}
Event::Status PollForEventStatus(Event *event) override {
return Event::Status::kError;
}
bool AllocateStream(Stream *stream) override { return true; }
void DeallocateStream(Stream *stream) override {}
bool CreateStreamDependency(Stream *dependent, Stream *other) override;
bool AllocateTimer(Timer *timer) override { return true; }
void DeallocateTimer(Timer *timer) override {}
bool StartTimer(Stream *stream, Timer *timer) override;
bool StopTimer(Stream *stream, Timer *timer) override;
bool BlockHostUntilDone(Stream *stream) override;
int PlatformDeviceCount() override { return 1; }
bool DeviceMemoryUsage(int64 *free, int64 *total) const override {
return false;
}
DeviceDescription *PopulateDeviceDescription() const override;
port::Status EnablePeerAccessTo(StreamExecutorInterface *other) override {
return port::Status::OK();
}
bool CanEnablePeerAccessTo(StreamExecutorInterface *other) override {
return true;
}
SharedMemoryConfig GetDeviceSharedMemoryConfig() override {
return SharedMemoryConfig::kDefault;
}
port::Status SetDeviceSharedMemoryConfig(SharedMemoryConfig config) override {
return port::Status{port::error::UNIMPLEMENTED,
"Shared memory not supported"};
}
std::unique_ptr<internal::EventInterface> CreateEventImplementation()
override {
return nullptr;
}
std::unique_ptr<internal::KernelInterface> CreateKernelImplementation()
override {
return nullptr;
}
std::unique_ptr<internal::StreamInterface> GetStreamImplementation()
override {
return std::unique_ptr<internal::StreamInterface>(new host::HostStream());
}
std::unique_ptr<internal::TimerInterface> GetTimerImplementation() override {
return std::unique_ptr<internal::TimerInterface>(new host::HostTimer());
}
port::StatusOr<DeviceMemoryBase> ExecuteGraph(const xla::Shape &shape,
Args args);
private:
DeviceMemoryBase AllocateSingleOutput(const xla::Shape &shape);
port::StatusOr<DeviceMemoryBase> AllocateOutputBuffer(
const xla::Shape &shape);
const PluginConfig plugin_config_;
};
} // namespace executorplugin
} // namespace gputools
} // namespace perftools
#endif // TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_EXECUTOR_H_

View File

@ -0,0 +1,125 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/plugin/executor/platform.h"
#include "tensorflow/compiler/plugin/executor/executor.h"
#include "tensorflow/compiler/plugin/executor/platform_id.h"
#include "tensorflow/stream_executor/lib/error.h"
#include "tensorflow/stream_executor/lib/initialize.h"
#include "tensorflow/stream_executor/lib/ptr_util.h"
#include "tensorflow/stream_executor/lib/status.h"
#include "tensorflow/stream_executor/lib/status_macros.h"
#include "tensorflow/stream_executor/lib/stringprintf.h"
namespace se = ::perftools::gputools;
namespace sep = ::perftools::gputools::executorplugin;
namespace perftools {
namespace gputools {
namespace executorplugin {
PLATFORM_DEFINE_ID(kExecutorPlatformId);
ExecutorPlatform::ExecutorPlatform() : name_("Executor") {}
ExecutorPlatform::~ExecutorPlatform() {}
Platform::Id ExecutorPlatform::id() const { return kExecutorPlatformId; }
int ExecutorPlatform::VisibleDeviceCount() const { return 1; }
const string& ExecutorPlatform::Name() const { return name_; }
port::StatusOr<StreamExecutor*> ExecutorPlatform::ExecutorForDevice(
int ordinal) {
StreamExecutorConfig config;
config.ordinal = ordinal;
config.plugin_config = PluginConfig();
config.device_options = DeviceOptions::Default();
return GetExecutor(config);
}
port::StatusOr<StreamExecutor*>
ExecutorPlatform::ExecutorForDeviceWithPluginConfig(
int device_ordinal, const PluginConfig& plugin_config) {
StreamExecutorConfig config;
config.ordinal = device_ordinal;
config.plugin_config = plugin_config;
config.device_options = DeviceOptions::Default();
return GetExecutor(config);
}
port::StatusOr<StreamExecutor*> ExecutorPlatform::GetExecutor(
const StreamExecutorConfig& config) {
mutex_lock lock(executors_mutex_);
port::StatusOr<StreamExecutor*> status = executor_cache_.Get(config);
if (status.ok()) {
return status.ValueOrDie();
}
port::StatusOr<std::unique_ptr<StreamExecutor>> executor =
GetUncachedExecutor(config);
if (!executor.ok()) {
return executor.status();
}
StreamExecutor* naked_executor = executor.ValueOrDie().get();
SE_RETURN_IF_ERROR(
executor_cache_.Insert(config, executor.ConsumeValueOrDie()));
return naked_executor;
}
port::StatusOr<std::unique_ptr<StreamExecutor>>
ExecutorPlatform::GetUncachedExecutor(const StreamExecutorConfig& config) {
auto executor = port::MakeUnique<StreamExecutor>(
this, port::MakeUnique<ExecutorExecutor>(config.plugin_config));
auto init_status = executor->Init(config.ordinal, config.device_options);
if (!init_status.ok()) {
return port::Status{
port::error::INTERNAL,
port::Printf(
"failed initializing StreamExecutor for device ordinal %d: %s",
config.ordinal, init_status.ToString().c_str())};
}
return std::move(executor);
}
void ExecutorPlatform::RegisterTraceListener(
std::unique_ptr<TraceListener> listener) {
LOG(FATAL) << "not yet implemented: register executor trace listener";
}
void ExecutorPlatform::UnregisterTraceListener(TraceListener* listener) {
LOG(FATAL) << "not yet implemented: unregister executor trace listener";
}
static void InitializeExecutorPlatform() {
std::unique_ptr<se::Platform> platform(new sep::ExecutorPlatform);
SE_CHECK_OK(se::MultiPlatformManager::RegisterPlatform(std::move(platform)));
}
} // namespace executorplugin
} // namespace gputools
} // namespace perftools
REGISTER_MODULE_INITIALIZER(executor_platform, sep::InitializeExecutorPlatform());
DECLARE_MODULE_INITIALIZER(multi_platform_manager);
// Note that module initialization sequencing is not supported in the
// open-source project, so this will be a no-op there.
REGISTER_MODULE_INITIALIZER_SEQUENCE(executor_platform, multi_platform_manager);

View File

@ -0,0 +1,83 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_PLATFORM_H_
#define TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_PLATFORM_H_
#include <memory>
#include <string>
#include <vector>
#include "tensorflow/stream_executor/executor_cache.h"
#include "tensorflow/stream_executor/lib/statusor.h"
#include "tensorflow/stream_executor/multi_platform_manager.h"
#include "tensorflow/stream_executor/platform.h"
#include "tensorflow/stream_executor/platform/mutex.h"
#include "tensorflow/stream_executor/platform/port.h"
#include "tensorflow/stream_executor/platform/thread_annotations.h"
#include "tensorflow/stream_executor/stream_executor_pimpl.h"
#include "tensorflow/stream_executor/trace_listener.h"
namespace perftools {
namespace gputools {
namespace executorplugin {
class ExecutorPlatform : public Platform {
public:
ExecutorPlatform();
~ExecutorPlatform() override;
Platform::Id id() const override;
// Device count is less clear-cut for CPUs than accelerators. This call
// currently returns the number of thread units in the host, as reported by
// base::NumCPUs().
int VisibleDeviceCount() const override;
const string& Name() const override;
port::StatusOr<StreamExecutor*> ExecutorForDevice(int ordinal) override;
port::StatusOr<StreamExecutor*> ExecutorForDeviceWithPluginConfig(
int ordinal, const PluginConfig& config) override;
port::StatusOr<StreamExecutor*> GetExecutor(
const StreamExecutorConfig& config) override;
port::StatusOr<std::unique_ptr<StreamExecutor>> GetUncachedExecutor(
const StreamExecutorConfig& config) override;
void RegisterTraceListener(std::unique_ptr<TraceListener> listener) override;
void UnregisterTraceListener(TraceListener* listener) override;
private:
// This platform's name.
string name_;
// mutex that guards the ordinal-to-executor map.
mutable mutex executors_mutex_;
// Cache of created StreamExecutors.
ExecutorCache executor_cache_;
SE_DISALLOW_COPY_AND_ASSIGN(ExecutorPlatform);
};
} // namespace executorplugin
} // namespace gputools
} // namespace perftools
#endif // TENSORFLOW_COMPILER_EXECUTOR_STREAM_EXECUTOR_EXECUTOR_PLATFORM_H_

View File

@ -0,0 +1,31 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_STREAM_EXECUTOR_EXECUTOR_PLATFORM_ID_H_
#define TENSORFLOW_STREAM_EXECUTOR_EXECUTOR_PLATFORM_ID_H_
#include "tensorflow/stream_executor/platform.h"
namespace perftools {
namespace gputools {
namespace executorplugin {
extern const Platform::Id kExecutorPlatformId;
} // namespace executorplugin
} // namespace gputools
} // namespace perftools
#endif // TENSORFLOW_STREAM_EXECUTOR_EXECUTOR_PLATFORM_ID_H_

View File

@ -0,0 +1,187 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/plugin/executor/transfer_manager.h"
#include "tensorflow/compiler/plugin/executor/platform_id.h"
#include "tensorflow/compiler/xla/literal_util.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include <string>
#include <utility>
#include <vector>
namespace sep = ::perftools::gputools::executorplugin;
namespace xla {
namespace executorplugin {
ExecutorTransferManager::ExecutorTransferManager() {}
se::Platform::Id ExecutorTransferManager::PlatformId() const {
return se::executorplugin::kExecutorPlatformId;
}
Status ExecutorTransferManager::TransferLiteralFromDevice(
se::StreamExecutor* executor, const se::DeviceMemoryBase& source,
const Shape& device_shape, const Shape& literal_shape, Literal* literal) {
TF_RET_CHECK(ShapeUtil::Compatible(device_shape, literal_shape));
// Tuples are a special case and contain one or more shapes inside of them to
// an arbitrary nesting depth.
if (device_shape.element_type() == TUPLE) {
*literal->mutable_shape() = literal_shape;
TF_ASSIGN_OR_RETURN(
std::vector<se::DeviceMemoryBase> element_buffers,
ShallowCopyTupleFromDevice(executor, source, device_shape));
TF_RET_CHECK(element_buffers.size() ==
ShapeUtil::TupleElementCount(device_shape));
for (int64 i = 0; i < element_buffers.size(); ++i) {
const Shape& element_device_shape = device_shape.tuple_shapes(i);
const Shape& element_literal_shape = literal_shape.tuple_shapes(i);
Literal* element_literal = literal->add_tuple_literals();
// Recursively call TransferFromDevice to copy over the data in the
// element array.
TF_RETURN_IF_ERROR(TransferLiteralFromDevice(
executor, element_buffers[i], element_device_shape,
element_literal_shape, element_literal));
}
return Status::OK();
}
*literal->mutable_shape() = device_shape;
literal->Reserve(ShapeUtil::ElementsIn(device_shape));
TF_RETURN_IF_ERROR(TransferBufferFromDevice(
executor, source, ShapeUtil::ByteSizeOf(device_shape),
literal->MutableInternalData()));
if (!ShapeUtil::Equal(literal_shape, device_shape)) {
literal->Swap(
literal->Relayout(literal_shape.layout()).get());
}
TF_RET_CHECK(ShapeUtil::Equal(literal_shape, literal->shape()));
return Status::OK();
}
StatusOr<std::vector<se::DeviceMemoryBase>>
ExecutorTransferManager::ShallowCopyTupleFromDevice(
se::StreamExecutor* executor, const se::DeviceMemoryBase& source,
const Shape& shape) {
TF_RET_CHECK(ShapeUtil::IsTuple(shape));
std::vector<void*> element_pointers(ShapeUtil::TupleElementCount(shape),
nullptr);
int64 tuple_size = ShapeUtil::ByteSizeOf(shape, sizeof(void*));
auto copy_status = executor->SynchronousMemcpyD2H(source, tuple_size,
element_pointers.data());
if (!copy_status.ok()) {
return AddStatus(
Status(static_cast<tensorflow::error::Code>(copy_status.code()),
copy_status.error_message()),
"failed transfer of tuple buffer " + ShapeUtil::HumanString(shape));
}
// Create a DeviceMemoryBase from each void* pointer.
std::vector<se::DeviceMemoryBase> destination;
for (int i = 0; i < element_pointers.size(); ++i) {
if (element_pointers[i] == nullptr &&
!ShapeUtil::HasZeroElements(shape.tuple_shapes(i))) {
return FailedPrecondition("tuple contains nullptr at element %d", i);
}
int64 buffer_size =
ShapeUtil::ByteSizeOf(shape.tuple_shapes(i), sizeof(void*));
destination.emplace_back(element_pointers[i], buffer_size);
}
return std::move(destination);
}
Status ExecutorTransferManager::TransferLiteralToDevice(
se::StreamExecutor* executor, const Literal& literal,
se::DeviceMemoryBase* destination) {
const Shape& shape = literal.shape();
if (ShapeUtil::IsTuple(literal.shape())) {
std::vector<void*> tuple_elements_on_device;
for (const Literal& tuple_element : literal.tuple_literals()) {
se::DeviceMemoryBase allocation = executor->AllocateArray<uint8>(
GetByteSizeRequirement(tuple_element.shape()));
TF_RETURN_IF_ERROR(
TransferLiteralToDevice(executor, tuple_element, &allocation));
tuple_elements_on_device.push_back(allocation.opaque());
}
return TransferBufferToDevice(
executor, tuple_elements_on_device.size() * sizeof(void*),
tuple_elements_on_device.data(), destination);
}
return TransferBufferToDevice(executor, GetByteSizeRequirement(shape),
literal.InternalData(),
destination);
}
Status ExecutorTransferManager::TransferLiteralToInfeed(
se::StreamExecutor* executor, const Literal& literal) {
const Shape& shape = literal.shape();
VLOG(1) << "transferring literal shape to infeed: "
<< ShapeUtil::HumanString(shape);
return Status::OK();
}
Status ExecutorTransferManager::TransferBufferToInfeed(
se::StreamExecutor* executor, int64 size, const void* source) {
return Unimplemented("Transfer to Infeed");
}
Status ExecutorTransferManager::TransferLiteralFromOutfeed(
perftools::gputools::StreamExecutor* executor, const Shape& literal_shape,
Literal* literal) {
const Shape& shape = literal->shape();
VLOG(1) << "transferring literal shape from outfeed: "
<< ShapeUtil::HumanString(shape);
return Status::OK();
}
Status ExecutorTransferManager::ResetDevices(
tensorflow::gtl::ArraySlice<perftools::gputools::StreamExecutor*>
executors) {
return Unimplemented("Device reset not supported");
}
int64 ExecutorTransferManager::GetByteSizeRequirement(const Shape& shape) {
return ShapeUtil::ByteSizeOf(shape, sizeof(void*));
}
} // namespace executorplugin
} // namespace xla
static std::unique_ptr<xla::TransferManager> CreateExecutorTransferManager() {
return xla::MakeUnique<xla::executorplugin::ExecutorTransferManager>();
}
static bool InitModule() {
xla::TransferManager::RegisterTransferManager(sep::kExecutorPlatformId,
&CreateExecutorTransferManager);
return true;
}
static bool module_initialized = InitModule();

View File

@ -0,0 +1,77 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_TRANSFER_MANAGER_H_
#define TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_TRANSFER_MANAGER_H_
#include "tensorflow/compiler/xla/service/transfer_manager.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include "tensorflow/core/platform/types.h"
#include <vector>
namespace se = ::perftools::gputools;
namespace xla {
namespace executorplugin {
class ExecutorTransferManager : public TransferManager {
public:
ExecutorTransferManager();
~ExecutorTransferManager() override {}
se::Platform::Id PlatformId() const override;
StatusOr<std::vector<se::DeviceMemoryBase>> ShallowCopyTupleFromDevice(
se::StreamExecutor* executor, const se::DeviceMemoryBase& source,
const Shape& shape) override;
Status TransferLiteralFromDevice(se::StreamExecutor* executor,
const se::DeviceMemoryBase& source,
const Shape& device_shape,
const Shape& literal_shape,
Literal* literal) override;
Status TransferLiteralToDevice(se::StreamExecutor* executor,
const Literal& literal,
se::DeviceMemoryBase* destination) override;
Status TransferLiteralToInfeed(se::StreamExecutor* executor,
const Literal& literal) override;
Status TransferBufferToInfeed(se::StreamExecutor* executor,
int64 size, const void* source) override;
Status TransferLiteralFromOutfeed(se::StreamExecutor* executor,
const Shape& literal_shape,
Literal* literal) override;
Status ResetDevices(
tensorflow::gtl::ArraySlice<se::StreamExecutor*> executors) override;
int64 GetByteSizeRequirement(const Shape& shape) override;
private:
TF_DISALLOW_COPY_AND_ASSIGN(ExecutorTransferManager);
};
} // namespace executorplugin
} // namespace xla
#endif // TENSORFLOW_COMPILER_EXECUTOR_DRIVER_EXECUTOR_TRANSFER_MANAGER_H_

View File

@ -218,7 +218,7 @@ class FtrlOptimizerTest(XLATestCase):
self.assertAllClose(np.array([-0.24059935, -0.46829352]), var0.eval())
self.assertAllClose(np.array([-0.02406147, -0.04830509]), var1.eval())
# When variables are intialized with Zero, FTRL-Proximal has two properties:
# When variables are initialized with Zero, FTRL-Proximal has two properties:
# 1. Without L1&L2 but with fixed learning rate, FTRL-Proximal is identical
# with GradientDescent.
# 2. Without L1&L2 but with adaptive learning rate, FTRL-Proximal is idential

View File

@ -94,12 +94,14 @@ class BatchMatMulOp : public XlaOpKernel {
// Slice off individual matrices and reshape to 2D tensors.
auto x_slice = builder->Slice(
x_flat, {i, 0, 0},
{i + 1, x_shape.dim_size(ndims - 2), x_shape.dim_size(ndims - 1)});
{i + 1, x_shape.dim_size(ndims - 2), x_shape.dim_size(ndims - 1)},
{1, 1, 1});
x_slice = builder->Reshape(
x_slice, {x_shape.dim_size(ndims - 2), x_shape.dim_size(ndims - 1)});
auto y_slice = builder->Slice(
y_flat, {i, 0, 0},
{i + 1, y_shape.dim_size(ndims - 2), y_shape.dim_size(ndims - 1)});
{i + 1, y_shape.dim_size(ndims - 2), y_shape.dim_size(ndims - 1)},
{1, 1, 1});
y_slice = builder->Reshape(
y_slice, {y_shape.dim_size(ndims - 2), y_shape.dim_size(ndims - 1)});

View File

@ -125,6 +125,7 @@ void BatchToSpace(XlaOpKernelContext* ctx,
// input_shape[M+1], ..., input_shape[N-1]]
std::vector<int64> start_indices(input_rank, 0);
std::vector<int64> end_indices = reshaped_permuted_shape;
std::vector<int64> strides(input_rank, 1);
for (int i = 0; i < block_rank; ++i) {
int64 crop_start = crops.Get<int64>({i, 0});
int64 crop_end = crops.Get<int64>({i, 1});
@ -139,7 +140,7 @@ void BatchToSpace(XlaOpKernelContext* ctx,
" end: ", crop_end, " size ", reshaped_permuted_shape[1 + i]));
}
xla::ComputationDataHandle output =
b->Slice(reshaped_permuted, start_indices, end_indices);
b->Slice(reshaped_permuted, start_indices, end_indices, strides);
ctx->SetOutput(0, output);
}

View File

@ -172,15 +172,14 @@ class DepthwiseConv2dNativeOp : public XlaOpKernel {
} else {
// These will be used to define the bounds of each slice.
// Within the loop, the input_channel index will be modified.
gtl::InlinedVector<int64, 4> filter_begin;
gtl::InlinedVector<int64, 4> filter_limits;
gtl::InlinedVector<int64, 4> input_begin;
gtl::InlinedVector<int64, 4> input_limits;
gtl::InlinedVector<int64, 4> filter_begin(4, 0);
gtl::InlinedVector<int64, 4> filter_limits(4);
gtl::InlinedVector<int64, 4> input_begin(4, 0);
gtl::InlinedVector<int64, 4> input_limits(4);
gtl::InlinedVector<int64, 4> strides(4, 1);
for (int i = 0; i < 4; ++i) {
filter_begin.push_back(0);
filter_limits.push_back(filter_shape.dim_size(i));
input_begin.push_back(0);
input_limits.push_back(input_shape.dim_size(i));
filter_limits[i] = filter_shape.dim_size(i);
input_limits[i] = input_shape.dim_size(i);
}
std::vector<int64> strides_for_tla{strides_[1], strides_[2]};
@ -209,9 +208,9 @@ class DepthwiseConv2dNativeOp : public XlaOpKernel {
input_limits[3] = i + 1;
xla::ComputationDataHandle filter_slice =
b.Slice(filter, filter_begin, filter_limits);
b.Slice(filter, filter_begin, filter_limits, strides);
xla::ComputationDataHandle input_slice =
b.Slice(input, input_begin, input_limits);
b.Slice(input, input_begin, input_limits, strides);
convs.push_back(b.ConvWithGeneralDimensions(
input_slice, filter_slice, strides_for_tla, xla_padding, dims));
}

View File

@ -125,7 +125,7 @@ class DiagPartOp : public XlaOpKernel {
diag = builder->Reshape(diag, {new_size, new_size + 1});
// Slices out the first column and reshapes to the final shape.
diag = builder->Slice(diag, {0, 0}, {new_size, 1});
diag = builder->Slice(diag, {0, 0}, {new_size, 1}, {1, 1});
diag = builder->Reshape(diag, new_dims);
ctx->SetOutput(0, diag);
@ -224,8 +224,9 @@ class MatrixDiagPartOp : public XlaOpKernel {
} else if (actual_size > target_size) {
std::vector<int64> start(flattened_dims.size(), 0);
std::vector<int64> limits(flattened_dims.begin(), flattened_dims.end());
std::vector<int64> strides(flattened_dims.size(), 1);
limits[flattened_dims.size() - 1] = target_size;
diag = builder->Slice(diag, start, limits);
diag = builder->Slice(diag, start, limits, strides);
}
// Reshape so the target values are in the first position of the last
@ -238,8 +239,9 @@ class MatrixDiagPartOp : public XlaOpKernel {
// Slices out the first column and reshapes to the final shape.
std::vector<int64> start(dims.size(), 0);
std::vector<int64> limits(dims.begin(), dims.end());
std::vector<int64> strides(dims.size(), 1);
limits[last_dim] = 1;
diag = builder->Slice(diag, start, limits);
diag = builder->Slice(diag, start, limits, strides);
// Collapses away the last dimension.
dims.pop_back();

View File

@ -156,6 +156,8 @@ class DynamicStitchOp : public XlaOpKernel {
indices0_shape.dims());
std::vector<int64> slice_limit(1 + data0_shape.dims() -
indices0_shape.dims());
std::vector<int64> stride(1 + data0_shape.dims() -
indices0_shape.dims(), 1);
for (int d = indices0_shape.dims(); d < data0_shape.dims(); d++) {
slice_limit[1 + d - indices0_shape.dims()] = data0_shape.dim_size(d);
}
@ -168,7 +170,7 @@ class DynamicStitchOp : public XlaOpKernel {
// And place it in the concat list in the place indicated by
// the index.
to_concat[index_num] =
ctx->builder()->Slice(expression, slice_start, slice_limit);
ctx->builder()->Slice(expression, slice_start, slice_limit, stride);
}
ctx->SetOutput(0, ctx->builder()->ConcatInDim(to_concat, 0));

View File

@ -54,7 +54,9 @@ class SliceOp : public XlaOpKernel {
for (int i = 0; i < begin.size(); ++i) {
limits.push_back(begin[i] + size[i]);
}
ctx->SetOutput(0, ctx->builder()->Slice(ctx->Input(0), begin, limits));
std::vector<int64> strides(begin.size(), 1);
ctx->SetOutput(0, ctx->builder()->Slice(ctx->Input(0), begin, limits,
strides));
}
private:

View File

@ -77,14 +77,14 @@ class SplitOp : public XlaOpKernel {
// The vectors we will use to define the slice. The entry for the
// split dimensions varies for each output.
std::vector<int64> begin;
std::vector<int64> limits;
std::vector<int64> begin(input_shape.dims(), 0);
std::vector<int64> limits(input_shape.dims());
std::vector<int64> strides(input_shape.dims(), 1);
for (int i = 0; i < input_shape.dims(); ++i) {
// Initially set up the limits to be the full size of the input:
// the split dimension is filled in below.
int64 dim = input_shape.dim_size(i);
begin.push_back(0);
limits.push_back(dim);
limits[i] = dim;
}
auto input = ctx->Input(1);
@ -94,7 +94,7 @@ class SplitOp : public XlaOpKernel {
// Slice out the ith split from the split dimension.
begin[split_dim] = i * slice_size;
limits[split_dim] = (i + 1) * slice_size;
ctx->SetOutput(i, ctx->builder()->Slice(input, begin, limits));
ctx->SetOutput(i, ctx->builder()->Slice(input, begin, limits, strides));
}
}
};
@ -188,7 +188,7 @@ class SplitVOp : public XlaOpKernel {
std::vector<int64> begin(input_shape.dims(), 0);
auto dim_sizes = input_shape.dim_sizes();
std::vector<int64> limits(dim_sizes.begin(), dim_sizes.end());
std::vector<int64> strides(input_shape.dims(), 1);
for (int i = 0; i < num_split; ++i) {
TensorShape output_shape(input_shape);
int slice_size = split_sizes_vec[i];
@ -196,7 +196,7 @@ class SplitVOp : public XlaOpKernel {
// Slice out the ith split from the split dimension.
limits[split_dim] = begin[split_dim] + slice_size;
ctx->SetOutput(i, ctx->builder()->Slice(input, begin, limits));
ctx->SetOutput(i, ctx->builder()->Slice(input, begin, limits, strides));
begin[split_dim] = limits[split_dim];
}
}

View File

@ -72,55 +72,29 @@ class StridedSliceOp : public XlaOpKernel {
&dummy, &dummy, &dummy, &begin, &end, &strides));
gtl::InlinedVector<int64, 4> dimensions_to_reverse;
gtl::InlinedVector<int64, 4> slice_begin, slice_end;
bool simple_strides = true;
gtl::InlinedVector<int64, 4> slice_begin, slice_end, slice_strides;
for (int i = 0; i < begin.size(); ++i) {
simple_strides &= (std::abs(strides[i]) == 1);
if (strides[i] > 0) {
slice_begin.push_back(begin[i]);
slice_end.push_back(end[i]);
slice_strides.push_back(strides[i]);
} else {
// Negative stride: swap begin and end, add 1 because the interval
// is semi-open, and mark the dimension to be reversed.
slice_begin.push_back(end[i] + 1);
slice_end.push_back(begin[i] + 1);
slice_begin.push_back(input_shape.dim_size(i) - begin[i] - 1);
slice_end.push_back(input_shape.dim_size(i) - end[i] - 1);
slice_strides.push_back(-strides[i]);
dimensions_to_reverse.push_back(i);
}
}
xla::ComputationDataHandle slice =
ctx->builder()->Slice(ctx->Input(0), slice_begin, slice_end);
xla::ComputationDataHandle slice = ctx->Input(0);
if (!dimensions_to_reverse.empty()) {
slice = ctx->builder()->Rev(slice, dimensions_to_reverse);
}
// If at least one of the strides is > 1 (or < -1) then use Slice
// to pull out each of the strided slices, and Concat to put them
// together again.
if (!simple_strides) {
// Re-adjust the begin and end now that the periphery has been
// sliced away.
for (int d = 0; d < strides.size(); ++d) {
slice_end[d] -= slice_begin[d];
slice_begin[d] = 0;
}
for (int d = 0; d < strides.size(); ++d) {
int64 stride = std::abs(strides[d]);
if (stride > 1) {
std::vector<xla::ComputationDataHandle> to_concat;
int64 end = slice_end[d];
for (int64 i = 0; i < end; i += stride) {
slice_begin[d] = i;
slice_end[d] = i + 1;
to_concat.push_back(
ctx->builder()->Slice(slice, slice_begin, slice_end));
}
slice = ctx->builder()->ConcatInDim(to_concat, d);
slice_begin[d] = 0;
slice_end[d] = to_concat.size();
}
}
}
slice = ctx->builder()->Slice(slice, slice_begin, slice_end, slice_strides);
slice = ctx->builder()->Reshape(slice, final_shape.dim_sizes());
ctx->SetOutput(0, slice);

View File

@ -318,7 +318,7 @@ class TensorArrayGatherOp : public XlaOpKernel {
for (int i = 0; i < num_indices; ++i) {
// Slices the i-th index out of `indices`, and pads it with zeros in the
// minor dimensions to form an index into the TensorArray storage.
auto index = b->Slice(indices, {i}, {i + 1});
auto index = b->Slice(indices, {i}, {i + 1}, {1});
// start_indices of the DynamicSlice are [index, 0, 0, ..., 0].
auto start_indices = PadIndexWithZeros(b, index, ta_shape.dims() - 1);
@ -381,16 +381,18 @@ class TensorArrayScatterOp : public XlaOpKernel {
std::vector<int64> value_starts(value_shape.dims(), 0);
auto value_ends = value_shape.dim_sizes();
std::vector<int64> value_strides(value_shape.dims(), 1);
// For every (index, value) pair, update the corresponding TensorArray
// storage.
for (int i = 0; i < num_indices; ++i) {
// Slice out part of the value.
value_starts[0] = i;
value_ends[0] = i + 1;
auto slice = b->Slice(value, value_starts, value_ends);
auto slice = b->Slice(value, value_starts, value_ends, value_strides);
// start_indices of the DynamicUpdateSlice are [index, 0, 0, ..., 0].
auto index = b->Slice(indices, {i}, {i + 1});
auto index = b->Slice(indices, {i}, {i + 1}, {1});
auto start_indices = PadIndexWithZeros(b, index, elem_shape.dims());
ta = DynamicAddSlice(b, ta, slice, slice_dims, start_indices);
}

View File

@ -66,6 +66,7 @@ class UnpackOp : public XlaOpKernel {
std::vector<int64> start_indices(input_shape.dims(), 0);
std::vector<int64> limit_indices(input_shape.dims());
std::vector<int64> strides(input_shape.dims(), 1);
for (int i = 0; i < input_shape.dims(); ++i) {
limit_indices[i] = input_shape.dim_size(i);
}
@ -73,7 +74,8 @@ class UnpackOp : public XlaOpKernel {
for (int i = 0; i < num; ++i) {
start_indices[axis] = i;
limit_indices[axis] = i + 1;
auto slice = ctx->builder()->Slice(input, start_indices, limit_indices);
auto slice = ctx->builder()->Slice(input, start_indices, limit_indices,
strides);
// Reshape to drop the 'axis' dimension.
auto result = ctx->builder()->Reshape(slice, output_shape.dim_sizes());
ctx->SetOutput(i, result);

View File

@ -256,7 +256,8 @@ void ComputationBuilder::CheckSameShape(const ComputationDataHandle& lhs,
ComputationDataHandle ComputationBuilder::Slice(
const ComputationDataHandle& operand,
tensorflow::gtl::ArraySlice<int64> start_indices,
tensorflow::gtl::ArraySlice<int64> limit_indices) {
tensorflow::gtl::ArraySlice<int64> limit_indices,
tensorflow::gtl::ArraySlice<int64> stride) {
if (!first_error_.ok() || !PrepareComputation().ok()) {
return ComputationDataHandle();
}
@ -269,6 +270,9 @@ ComputationDataHandle ComputationBuilder::Slice(
for (int64 index : limit_indices) {
request.add_limit_indices(index);
}
for (int64 index : stride) {
request.add_stride(index);
}
OpRequest op_request;
*op_request.mutable_computation() = computation_.handle();
*op_request.mutable_slice_request() = request;

View File

@ -211,9 +211,11 @@ class ComputationBuilder {
//
// Note that "limit" means up-to-but-not-including; i.e. [start, limit) in 1D
// range notation.
// The stride parameter determines the stride over the slice
ComputationDataHandle Slice(const ComputationDataHandle& operand,
tensorflow::gtl::ArraySlice<int64> start_indices,
tensorflow::gtl::ArraySlice<int64> limit_indices);
tensorflow::gtl::ArraySlice<int64> limit_indices,
tensorflow::gtl::ArraySlice<int64> stride);
// Enqueues a slice operation onto the computation that slices the 'operand'
// from dynamic start indices which are passed in 'start_indices'.

View File

@ -1205,11 +1205,7 @@ void Literal::Resize<double>(int64 num_elements, double value) {
template <>
void Literal::Resize<half>(int64 num_elements, half value) {
CHECK_EQ(ShapeUtil::ElementsIn(shape()), num_elements);
mutable_f16s()->resize(num_elements * sizeof(half));
auto data = GetMutableArraySlice<half>();
for (int i = 0; i < num_elements; i++) {
data[i] = value;
}
mutable_f16s()->resize(num_elements, value);
}
template <typename RepeatedFieldT, typename NativeT>
@ -1252,7 +1248,7 @@ LiteralProto Literal::ToProto() const {
case F16:
*proto.mutable_f16s() =
string(reinterpret_cast<const char*>(f16s_.data()),
f16s_.size() / sizeof(half));
f16s_.size() * sizeof(half));
break;
case F32:
CopyToRepeatedField(proto.mutable_f32s(), f32s());
@ -1308,7 +1304,7 @@ void Literal::CopyFromProto(const LiteralProto& literal_proto) {
const string& s(literal_proto.f16s());
CHECK_EQ(0, s.size() % sizeof(half));
f16s_ = std::vector<half>(s.size() / sizeof(half));
memcpy(f16s_.data(), s.data(), s.size() / sizeof(half));
memcpy(f16s_.data(), s.data(), s.size());
break;
}
case F32:

View File

@ -939,5 +939,62 @@ TEST_F(LiteralUtilTest, CopyFromProto_Bool) {
}
}
// Note that f16 is currently stored in a byte array in little endian byte order
TEST_F(LiteralUtilTest, ToProto_f16) {
half h1(1.0f);
half h2(2.0f);
auto m = Literal::CreateR2<half>({{h1, h2}, {h2, h1}});
Literal* l = m.get();
EXPECT_EQ(4, ShapeUtil::ElementsIn(l->shape()));
EXPECT_EQ(4, l->f16s().size());
EXPECT_EQ(4, l->f16s_size());
LiteralProto p = l->ToProto();
EXPECT_EQ(4, ShapeUtil::ElementsIn(p.shape()));
EXPECT_EQ(8, p.f16s().size());
const char* d = p.f16s().data();
EXPECT_EQ(d[0], 0);
EXPECT_EQ(d[1], 0x3C);
EXPECT_EQ(d[2], 0);
EXPECT_EQ(d[3], 0x40);
EXPECT_EQ(d[4], 0);
EXPECT_EQ(d[5], 0x40);
EXPECT_EQ(d[6], 0);
EXPECT_EQ(d[7], 0x3C);
}
// Note that f16 is currently stored in a byte array in little endian byte order
TEST_F(LiteralUtilTest, CopyFromProto_f16) {
half h1(1.0f);
half h2(2.0f);
const char half_vals[8] = {
0x00, 0x3C, 0x00, 0x40, 0x00, 0x40, 0x00, 0x3C
};
LiteralProto p;
p.mutable_shape()->set_element_type(F16);
p.mutable_shape()->clear_dimensions();
p.mutable_shape()->add_dimensions(4);
p.clear_f16s();
p.set_f16s(half_vals, 8);
Literal literal(p);
ASSERT_EQ(4, literal.f16s_size());
ASSERT_EQ(h1, literal.f16s(0));
ASSERT_EQ(h2, literal.f16s(1));
ASSERT_EQ(h2, literal.f16s(2));
ASSERT_EQ(h1, literal.f16s(3));
const std::vector<half>& r = literal.f16s();
ASSERT_EQ(4, r.size());
ASSERT_EQ(h1, r[0]);
ASSERT_EQ(h2, r[1]);
ASSERT_EQ(h2, r[2]);
ASSERT_EQ(h1, r[3]);
}
} // namespace
} // namespace xla

View File

@ -90,8 +90,6 @@ cc_library(
":hlo_query",
"//tensorflow/compiler/xla:literal_util",
"//tensorflow/compiler/xla:shape_util",
"//tensorflow/compiler/xla:status",
"//tensorflow/compiler/xla:status_macros",
"//tensorflow/compiler/xla:statusor",
"//tensorflow/compiler/xla:types",
"//tensorflow/compiler/xla:util",

View File

@ -855,6 +855,7 @@ Status AlgebraicSimplifierVisitor::HandlePad(HloInstruction* pad) {
// Second, construct the slice instruction to perform the negative padding.
std::vector<int64> start_indices;
std::vector<int64> end_indices;
std::vector<int64> strides;
for (int64 i = 0; i < pad->padding_config().dimensions_size(); ++i) {
const PaddingConfig::PaddingConfigDimension& padding_dimension =
pad->padding_config().dimensions(i);
@ -868,16 +869,18 @@ Status AlgebraicSimplifierVisitor::HandlePad(HloInstruction* pad) {
}
start_indices.push_back(start);
end_indices.push_back(end);
strides.push_back(1);
}
// Verify that the slice shape matches the pad shape.
TF_ASSIGN_OR_RETURN(Shape inferred_slice_shape,
ShapeInference::InferSliceShape(
nonzero_pad_shape, start_indices, end_indices));
nonzero_pad_shape, start_indices, end_indices,
strides));
TF_RET_CHECK(ShapeUtil::Compatible(inferred_slice_shape, pad->shape()));
std::unique_ptr<HloInstruction> slice = HloInstruction::CreateSlice(
pad->shape(), nonzero_pad, start_indices, end_indices);
pad->shape(), nonzero_pad, start_indices, end_indices, strides);
return ReplaceWithNewInstruction(pad, std::move(slice));
}

View File

@ -520,7 +520,7 @@ TEST_F(AlgebraicSimplifierTest, RemoveEmptyConcatenateOperands) {
HloInstruction::CreateConstant(Literal::CreateR1<float>({})));
HloInstruction* empty_slice =
builder.AddInstruction(HloInstruction::CreateSlice(
ShapeUtil::MakeShape(F32, {0}), param1, {42}, {42}));
ShapeUtil::MakeShape(F32, {0}), param1, {42}, {42}, {1}));
Shape result_shape = ShapeUtil::MakeShape(F32, {3 * kParamLength});
builder.AddInstruction(HloInstruction::CreateConcatenate(
result_shape, {empty_literal, param0, param0, empty_slice, param1}, 0));
@ -551,7 +551,7 @@ TEST_F(AlgebraicSimplifierTest, OnlyEmptyConcatenateOperands) {
HloInstruction::CreateConstant(Literal::CreateR1<float>({})));
HloInstruction* empty_slice =
builder.AddInstruction(HloInstruction::CreateSlice(
ShapeUtil::MakeShape(F32, {0}), param0, {42}, {42}));
ShapeUtil::MakeShape(F32, {0}), param0, {42}, {42}, {1}));
Shape result_shape = ShapeUtil::MakeShape(F32, {0});
builder.AddInstruction(HloInstruction::CreateConcatenate(
result_shape, {empty_literal, empty_slice}, 0));
@ -1132,7 +1132,7 @@ TEST_F(AlgebraicSimplifierTest, RemoveNoopSlice) {
0, ShapeUtil::MakeShape(F32, {dim0, dim1}), "param"));
builder.AddInstruction(HloInstruction::CreateSlice(
ShapeUtil::MakeShape(F32, {dim0, dim1}), param, /*start_indices=*/{0, 0},
/*limit_indices=*/{dim0, dim1}));
/*limit_indices=*/{dim0, dim1}, /*slices=*/{1, 1}));
HloModule module(TestName());
HloComputation* computation = module.AddEntryComputation(builder.Build());
@ -1537,7 +1537,7 @@ TEST_F(AlgebraicSimplifierTest, ScalarBroadcastToSlice) {
Shape slice_shape = ShapeUtil::MakeShape(F32, {2, 2, 3, 3});
HloInstruction* slice = builder.AddInstruction(HloInstruction::CreateSlice(
slice_shape, broadcast, {0, 1, 2, 3}, {2, 3, 5, 6}));
slice_shape, broadcast, {0, 1, 2, 3}, {2, 3, 5, 6}, {1, 1, 1, 1}));
HloModule module(TestName());
auto computation = module.AddEntryComputation(builder.Build());

View File

@ -731,7 +731,7 @@ TEST_F(BufferAssignmentTest, ReuseNonOperandBuffer) {
auto negate = builder.AddInstruction(
HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0));
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1}));
auto broadcast = builder.AddInstruction(
HloInstruction::CreateBroadcast(f32a100x10_, slice, {1}));
@ -763,7 +763,7 @@ TEST_F(BufferAssignmentTest, NoReuseLiveBuffer) {
auto negate = builder.AddInstruction(
HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0));
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1}));
auto broadcast = builder.AddInstruction(
HloInstruction::CreateBroadcast(f32a100x10_, slice, {1}));
builder.AddInstruction(HloInstruction::CreateTuple({negate, broadcast}));
@ -800,7 +800,7 @@ TEST_F(BufferAssignmentTest, NoReuseAliasedBuffer) {
auto tuple_element = builder.AddInstruction(
HloInstruction::CreateGetTupleElement(f32vec100_, tuple, 0));
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, tuple_element, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, tuple_element, {0}, {10}, {1}));
auto broadcast = builder.AddInstruction(
HloInstruction::CreateBroadcast(f32a100x10_, slice, {1}));
builder.AddInstruction(HloInstruction::CreateTuple({tuple, broadcast}));
@ -835,7 +835,7 @@ TEST_F(BufferAssignmentTest, DoNotReuseOversizedOutputBuffer) {
HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0));
// Slice output is 10 elements.
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1}));
// Broadcast output is 40 elements.
auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(
ShapeUtil::MakeShape(F32, {10, 4}), slice, {0}));
@ -867,7 +867,7 @@ TEST_F(BufferAssignmentTest, ReuseOutputBufferIfExactlySized) {
auto negate = builder.AddInstruction(
HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0));
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1}));
// Broadcast output is 40 elements.
auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(
ShapeUtil::MakeShape(F32, {10, 10}), slice, {0}));
@ -904,7 +904,7 @@ TEST_F(BufferAssignmentTest, DoNotReuseOversizedOutputBufferInTuple) {
HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0));
// Slice output is 10 elements.
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}));
HloInstruction::CreateSlice(f32vec10_, negate, {0}, {10}, {1}));
// Broadcast output is 40 elements.
auto broadcast = builder.AddInstruction(HloInstruction::CreateBroadcast(
ShapeUtil::MakeShape(F32, {10, 4}), slice, {0}));

View File

@ -588,7 +588,7 @@ class FusedDynamicUpdateSliceLivenessTest : public BufferLivenessTest {
if (update_uses_tuple_element1) {
// Create a slice instruction as an additional user of 'gte1'.
slice = builder.AddInstruction(
HloInstruction::CreateSlice(update_shape, gte1, {0}, {3}));
HloInstruction::CreateSlice(update_shape, gte1, {0}, {3}, {1}));
update = builder.AddInstruction(HloInstruction::CreateBinary(
update_shape, HloOpcode::kAdd, update, slice));
}

View File

@ -55,7 +55,7 @@ class CompileOnlyService : public Service {
// Override Service methods that require or imply the existence of an
// execute backend. Note that this does not include TransferToClient, as
// computing contants produces global data that we may wish to transfer.
// computing constants produces global data that we may wish to transfer.
tensorflow::Status Execute(const ExecuteRequest* arg,
ExecuteResponse* result) override {
return Unimplemented("CompileOnlyService does not support execution.");

View File

@ -49,17 +49,18 @@ Status DeviceAssignment::Serialize(DeviceAssignmentProto* proto) const {
return Status::OK();
}
/* static */ StatusOr<DeviceAssignment> DeviceAssignment::Deserialize(
const DeviceAssignmentProto& proto) {
/* static */ StatusOr<std::unique_ptr<DeviceAssignment>>
DeviceAssignment::Deserialize(const DeviceAssignmentProto& proto) {
TF_RET_CHECK(proto.computation_devices_size() == proto.computation_count());
DeviceAssignment assignment(proto.replica_count(), proto.computation_count());
auto assignment = MakeUnique<DeviceAssignment>(proto.replica_count(),
proto.computation_count());
for (int computation = 0; computation < proto.computation_count();
++computation) {
const auto& computation_device = proto.computation_devices(computation);
TF_RET_CHECK(computation_device.replica_device_ids_size() ==
proto.replica_count());
for (int replica = 0; replica < proto.replica_count(); ++replica) {
assignment(replica, computation) =
(*assignment)(replica, computation) =
computation_device.replica_device_ids(replica);
}
}

View File

@ -49,7 +49,11 @@ class DeviceAssignment : public Array2D<int> {
// Protocol buffer serialization and deserialization.
Status Serialize(DeviceAssignmentProto* proto) const;
static StatusOr<DeviceAssignment> Deserialize(
// Return a std::unique_ptr<DeviceAssignment> instead of a DeviceAssignment
// directly because one of the supported TF platforms (mac) does not compile
// due to a StatusOr of an incomplete type (DeviceAssignment).
static StatusOr<std::unique_ptr<DeviceAssignment>> Deserialize(
const DeviceAssignmentProto& proto);
};

View File

@ -359,7 +359,6 @@ Status AppendIRToFile(const string& file_name, const string& ir_module_string) {
StatusOr<std::unique_ptr<Executable>> CpuCompiler::Compile(
std::unique_ptr<HloModule> module, HloDumper dump_hlo,
se::StreamExecutor* stream_exec) {
VLOG(1) << "Compiling: " << module->name();
TF_RET_CHECK(stream_exec != nullptr);
std::call_once(llvm_command_line_options_initialized,
&InitializeLLVMCommandLineOptions, module->config());
@ -404,8 +403,6 @@ StatusOr<std::unique_ptr<Executable>> CpuCompiler::Compile(
module->config().debug_options().xla_dump_debug_json_to();
if (CpuParallelBackendRequested(module->config())) {
VLOG(1) << "Using parallel cpu backend";
// Run buffer analysis on the HLO graph. This analysis figures out which
// temporary buffers are required to run the computation.
// DependencyHloOrdering is used for the parallel emitter because the order
@ -500,8 +497,6 @@ StatusOr<std::unique_ptr<Executable>> CpuCompiler::Compile(
.set_ir_module_string(ir_module_string);
}
} else {
VLOG(1) << "Using sequential cpu backend";
// Select an order for emitting the HLO instructions for each
// computation. Using this sequence enables tighter buffer liveness analysis
// and reduced memory usage (as compared to using DependencyHloOrdering).
@ -567,7 +562,6 @@ StatusOr<std::unique_ptr<Executable>> CpuCompiler::Compile(
}
}
VLOG(1) << "Compilation finished";
return std::move(cpu_executable);
}
@ -669,7 +663,6 @@ CpuCompiler::CompileAheadOfTime(std::vector<std::unique_ptr<HloModule>> modules,
std::vector<std::unique_ptr<AotCompilationResult>> results;
for (size_t i = 0; i < modules.size(); ++i) {
HloModule* module = modules[i].get();
VLOG(1) << "Compiling ahead-of-time: " << module->name();
TF_RETURN_IF_ERROR(RunHloPasses(module, dump_hlo));
@ -748,8 +741,6 @@ CpuCompiler::CompileAheadOfTime(std::vector<std::unique_ptr<HloModule>> modules,
std::move(object_file_data), std::move(buffer_sizes),
result_slice.index()));
}
VLOG(1) << "Compilation finished";
return std::move(results);
}

View File

@ -949,9 +949,20 @@ llvm_ir::ElementGenerator ElementalIrEmitter::MakeElementGenerator(
const IrArray::Index& index) -> StatusOr<llvm::Value*> {
IrArray::Index sliced_index(index.size());
for (int i = 0; i < index.size(); ++i) {
sliced_index[i] = ir_builder_->CreateAdd(
index[i], llvm::ConstantInt::get(index[i]->getType(),
hlo->slice_starts(i)));
int64 stride = hlo->slice_stride(i);
if (stride != 1) {
sliced_index[i] = ir_builder_->CreateAdd(
ir_builder_->CreateMul(
index[i], llvm::ConstantInt::get(index[i]->getType(),
stride)),
llvm::ConstantInt::get(index[i]->getType(),
hlo->slice_starts(i)));
} else {
sliced_index[i] = ir_builder_->CreateAdd(
index[i],
llvm::ConstantInt::get(index[i]->getType(),
hlo->slice_starts(i)));
}
}
return operand_to_generator.at(hlo->operand(0))(sliced_index);
};

View File

@ -80,6 +80,7 @@ HloInstruction* MaybePaddedAndSlicedInput(
std::vector<int64> start_indices(input->shape().dimensions_size(), 0);
std::vector<int64> limit_indices(input->shape().dimensions().begin(),
input->shape().dimensions().end());
std::vector<int64> strides(input->shape().dimensions_size(), 1);
for (size_t i = 0; i < conv_dnums.spatial_dimensions().size(); ++i) {
int64 dim = conv_dnums.spatial_dimensions(i);
// If dimension "dim" has negative padding, increase the start index or
@ -92,9 +93,9 @@ HloInstruction* MaybePaddedAndSlicedInput(
input = computation->AddInstruction(HloInstruction::CreateSlice(
ShapeInference::InferSliceShape(input->shape(), start_indices,
limit_indices)
limit_indices, strides)
.ConsumeValueOrDie(),
input, start_indices, limit_indices));
input, start_indices, limit_indices, strides));
}
return input;
@ -354,6 +355,8 @@ bool PadInsertion::CanonicalizeBackwardInputConvolution(
std::vector<int64> limit_indices(
new_backward_conv->shape().dimensions().begin(),
new_backward_conv->shape().dimensions().end());
std::vector<int64> strides(new_backward_conv->shape().dimensions_size(),
1LL);
for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) {
int64 padding_low = backward_conv->window().dimensions(i).padding_low();
int64 padding_high = backward_conv->window().dimensions(i).padding_high();
@ -373,13 +376,13 @@ bool PadInsertion::CanonicalizeBackwardInputConvolution(
// Replace the old backward convolution with the slice.
CHECK(ShapeUtil::Compatible(
ShapeInference::InferSliceShape(new_backward_conv->shape(), start_indices,
limit_indices)
limit_indices, strides)
.ConsumeValueOrDie(),
backward_conv->shape()));
TF_CHECK_OK(computation->ReplaceWithNewInstruction(
backward_conv,
HloInstruction::CreateSlice(backward_conv->shape(), new_backward_conv,
start_indices, limit_indices)));
start_indices, limit_indices, strides)));
return true;
}

View File

@ -147,6 +147,7 @@ TEST_F(HloConstantFoldingTest, Slice) {
const int64 dimensions[] = {11, 8, 7, 5, 9};
const int64 slice_start[] = {4, 2, 3, 1, 5};
const int64 slice_limits[] = {10, 8, 6, 5, 9};
const int64 slice_strides[] = {1, 1, 1, 1, 1};
TF_ASSIGN_OR_ASSERT_OK(auto literal,
LiteralTestUtil::CreateRandomLiteral<F32>(
ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0));
@ -154,7 +155,7 @@ TEST_F(HloConstantFoldingTest, Slice) {
HloInstruction::CreateConstant(std::move(literal)));
Shape shape = ShapeUtil::MakeShape(F32, {6, 6, 3, 4, 4});
builder.AddInstruction(HloInstruction::CreateSlice(
shape, literal_instruction, slice_start, slice_limits));
shape, literal_instruction, slice_start, slice_limits, slice_strides));
auto module = CreateNewModule();
auto computation = module->AddEntryComputation(builder.Build());

View File

@ -306,11 +306,13 @@ HloInstruction::CreateCrossReplicaSum(const Shape& shape,
/* static */ std::unique_ptr<HloInstruction> HloInstruction::CreateSlice(
const Shape& shape, HloInstruction* operand,
tensorflow::gtl::ArraySlice<int64> start_indices,
tensorflow::gtl::ArraySlice<int64> limit_indices) {
tensorflow::gtl::ArraySlice<int64> limit_indices,
tensorflow::gtl::ArraySlice<int64> strides) {
auto instruction = WrapUnique(new HloInstruction(HloOpcode::kSlice, shape));
instruction->AppendOperand(operand);
instruction->slice_starts_.assign(start_indices.begin(), start_indices.end());
instruction->slice_limits_.assign(limit_indices.begin(), limit_indices.end());
instruction->slice_strides_.assign(strides.begin(), strides.end());
return instruction;
}
@ -852,7 +854,8 @@ std::unique_ptr<HloInstruction> HloInstruction::CloneWithNewOperands(
return CreateReshape(shape, new_operands[0]);
case HloOpcode::kSlice:
CHECK_EQ(new_operands.size(), 1);
return CreateSlice(shape, new_operands[0], slice_starts_, slice_limits_);
return CreateSlice(shape, new_operands[0], slice_starts_, slice_limits_,
slice_strides_);
case HloOpcode::kDynamicSlice:
return CreateDynamicSlice(shape, new_operands[0], new_operands[1],
dynamic_slice_sizes_);

View File

@ -174,7 +174,8 @@ class HloInstruction {
static std::unique_ptr<HloInstruction> CreateSlice(
const Shape& shape, HloInstruction* operand,
tensorflow::gtl::ArraySlice<int64> start_indices,
tensorflow::gtl::ArraySlice<int64> limit_indices);
tensorflow::gtl::ArraySlice<int64> limit_indices,
tensorflow::gtl::ArraySlice<int64> strides);
// Creates a slice instruction, where the first operand is sliced by
// start indices specified in the second operand, and by size specfied in
@ -662,6 +663,15 @@ class HloInstruction {
return slice_limits_;
}
// Returns the stride in the given dimension for a slice node.
//
// Precondition: opcode() == HloOpcode::kSlice
int64 slice_stride(int64 dimension) const {
CHECK_EQ(HloOpcode::kSlice, opcode_);
return slice_strides_[dimension];
}
const std::vector<int64>& slice_strides() const { return slice_strides_; }
// Returns the size of the slice in the given dimension for a dynamic
// slice node.
//
@ -907,6 +917,7 @@ class HloInstruction {
// Describes the [begin, end) index range for a slice.
std::vector<int64> slice_starts_;
std::vector<int64> slice_limits_;
std::vector<int64> slice_strides_;
// The bit sizes for a reduce-precision operation.
int32 exponent_bits_;

View File

@ -67,7 +67,8 @@ class HloRematerializationTest : public HloTestBase {
/*dimension=*/0));
auto slice_1 = builder.AddInstruction(HloInstruction::CreateSlice(
vec1_shape_, concat_1, /*start_indices=*/{0},
/*limit_indices=*/{1}));
/*limit_indices=*/{1},
/*strides=*/{1}));
auto concat_2 = builder.AddInstruction(HloInstruction::CreateConcatenate(
ShapeUtil::MakeShape(xla::F32, {1025}), {bcast, slice_1},
/*dimension=*/0));
@ -75,7 +76,8 @@ class HloRematerializationTest : public HloTestBase {
// which is necessary to use this computation in a while.
builder.AddInstruction(HloInstruction::CreateSlice(vec1_shape_, concat_2,
/*start_indices=*/{0},
/*limit_indices=*/{1}));
/*limit_indices=*/{1},
/*strides=*/{1}));
return builder.Build();
}
@ -103,7 +105,8 @@ class HloRematerializationTest : public HloTestBase {
HloInstruction::CreateBroadcast(vec1024_shape_, param, {}));
auto slice_1 = builder.AddInstruction(
HloInstruction::CreateSlice(vec1_shape_, bcast, /*start_indices=*/{0},
/*limit_indices=*/{1}));
/*limit_indices=*/{1},
/*strides=*/{1}));
auto while_inst = builder.AddInstruction(HloInstruction::CreateWhile(
vec1_shape_, while_cond, while_body, slice_1));
auto concat = builder.AddInstruction(HloInstruction::CreateConcatenate(
@ -111,7 +114,8 @@ class HloRematerializationTest : public HloTestBase {
/*dimension=*/0));
builder.AddInstruction(HloInstruction::CreateSlice(vec1_shape_, concat,
/*start_indices=*/{0},
/*limit_indices=*/{1}));
/*limit_indices=*/{1},
/*strides=*/{1}));
return builder.Build();
}
@ -353,7 +357,7 @@ TEST_F(HloRematerializationTest, InstructionRematerializedMultipleTimes) {
/*dimension=*/0));
builder.AddInstruction(HloInstruction::CreateSlice(
vec1024_shape_, concat, /*start_indices=*/{0},
/*limit_indices=*/{1024}));
/*limit_indices=*/{1024}, /*slices=*/{1}));
subcomputation = module->AddEmbeddedComputation(builder.Build());
}
@ -469,7 +473,7 @@ TEST_P(IndirectUseTest, IndirectUseNotRematerialized) {
/*dimension=*/0));
builder.AddInstruction(HloInstruction::CreateSlice(
vec1024_shape_, concat, /*start_indices=*/{0},
/*limit_indices=*/{1024}));
/*limit_indices=*/{1024}, /*slices=*/{1}));
subcomputation = module->AddEmbeddedComputation(builder.Build());
}

View File

@ -356,9 +356,26 @@ void EmitLogging(const char* tag, llvm::Value* value,
void SetTbaaForInstruction(llvm::Instruction* instruction, Shape shape,
bool is_pointer_to) {
// TODO(b/62903316): TBAA metadata causes LLVM to miscompile generated code,
// most likely because the generated metadata is incorrect. Disable TBAA
// metadata while we resolve this.
llvm::MDBuilder metadata_builder(instruction->getContext());
llvm::MDNode* root = metadata_builder.createTBAARoot("XLA TBAA");
string type_name;
if (is_pointer_to) {
type_name += "pointer-to ";
}
// Scalars do not have layout which makes it permissible to omit an explicit
// layout. To make sure that equivalent scalar shapes have the same TBAA,
// remove the (meaningless) explicit layout if one is present.
if (!ShapeUtil::IsArray(shape) || ShapeUtil::IsScalar(shape)) {
LayoutUtil::ClearLayout(&shape);
} else {
CHECK(shape.has_layout());
}
type_name += shape.ShortDebugString();
llvm::MDNode* tbaa_node =
metadata_builder.createTBAANode(llvm_ir::AsStringRef(type_name), root);
instruction->setMetadata(llvm::LLVMContext::MD_tbaa,
metadata_builder.createTBAAStructTagNode(
tbaa_node, tbaa_node, /*Offset=*/0));
}
void SetAlignmentMetadataForLoad(llvm::LoadInst* load, uint64_t alignment) {

View File

@ -1135,7 +1135,8 @@ ShapeInference::InferDegenerateDimensionBroadcastShape(
/* static */ StatusOr<Shape> ShapeInference::InferSliceShape(
const Shape& arg, tensorflow::gtl::ArraySlice<int64> starts,
tensorflow::gtl::ArraySlice<int64> limits) {
tensorflow::gtl::ArraySlice<int64> limits,
tensorflow::gtl::ArraySlice<int64> strides) {
TF_RETURN_IF_ERROR(ExpectNotTupleOrOpaque(arg, "operand of slice"));
VLOG(2) << tensorflow::strings::Printf(
"slicing shape %s starts={%s} limits={%s}",
@ -1158,13 +1159,13 @@ ShapeInference::InferDegenerateDimensionBroadcastShape(
for (int64 dimension = 0; dimension < starts.size(); ++dimension) {
int64 start_index = starts[dimension];
int64 limit_index = limits[dimension];
int64 stride = strides[dimension];
if (start_index < 0) {
return InvalidArgument("negative start index to slice: %lld",
start_index);
}
if (limit_index < 0) {
return InvalidArgument("negative limit index to slice: %lld",
limit_index);
if (stride == 0) {
return InvalidArgument("Zero stride");
}
if (limit_index > arg.dimensions(dimension)) {
return InvalidArgument(
@ -1172,18 +1173,21 @@ ShapeInference::InferDegenerateDimensionBroadcastShape(
"size (%lld)",
limit_index, arg.dimensions(dimension));
}
if (start_index > limit_index) {
return InvalidArgument(
"limit index (%lld) must be greater or equal to "
"start index (%lld) in slice",
limit_index, start_index);
}
VLOG(2) << tensorflow::strings::Printf("starts[%lld] = %lld", dimension,
start_index);
VLOG(2) << tensorflow::strings::Printf("limits[%lld] = %lld", dimension,
limit_index);
sizes.push_back(limits[dimension] - starts[dimension]);
if (stride > 0) {
if (start_index > limit_index) {
return InvalidArgument(
"limit index (%lld) must be greater or equal to "
"start index (%lld) in slice with positive stride",
limit_index, start_index);
}
sizes.push_back((limit_index - start_index + stride - 1) / stride);
} else {
return InvalidArgument("Negative strides not supported");
}
}
return ShapeUtil::MakeShape(arg.element_type(), sizes);

View File

@ -116,7 +116,8 @@ class ShapeInference {
// e.g. slice f32[32x32] 0:16 0:16 -> f32[16x16]
static StatusOr<Shape> InferSliceShape(
const Shape& arg, tensorflow::gtl::ArraySlice<int64> starts,
tensorflow::gtl::ArraySlice<int64> limits);
tensorflow::gtl::ArraySlice<int64> limits,
tensorflow::gtl::ArraySlice<int64> strides);
// Infers the shape produced by a dynamic slice operation of size specified
// in 'slice_sizes', with dynamic start indices shape 'start_indices_shape'.

View File

@ -682,16 +682,43 @@ TEST_F(ReduceShapeInferenceTest, ErrorElementTypeVsApplyType) {
TEST_F(ShapeInferenceTest, InferSliceShapeRank2) {
Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64});
auto inferred_status =
ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {64, 64});
ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {64, 64}, {1, 1});
ASSERT_IS_OK(inferred_status.status());
Shape inferred = inferred_status.ValueOrDie();
ASSERT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {32, 64}), inferred));
}
TEST_F(ShapeInferenceTest, InferSliceShapeRank2WithStrides) {
Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64});
auto inferred_status =
ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {64, 64}, {2, 4});
ASSERT_IS_OK(inferred_status.status());
Shape inferred = inferred_status.ValueOrDie();
ASSERT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {16, 16}), inferred));
}
TEST_F(ShapeInferenceTest, InferSliceShapeRank2WithStridesNotIntegral) {
Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64});
auto inferred_status =
ShapeInference::InferSliceShape(matrix_shape, {15, 0}, {20, 13}, {2, 4});
ASSERT_IS_OK(inferred_status.status());
Shape inferred = inferred_status.ValueOrDie();
ASSERT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {3, 4}), inferred));
}
TEST_F(ShapeInferenceTest, InferInvalidStride) {
Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64});
auto inferred_status =
ShapeInference::InferSliceShape(matrix_shape, {127, 0}, {129, 2}, {0, 1});
ASSERT_FALSE(inferred_status.ok());
ASSERT_EQ(tensorflow::error::INVALID_ARGUMENT,
inferred_status.status().code());
}
TEST_F(ShapeInferenceTest, InferOobSliceShapeRank2) {
Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64});
auto inferred_status =
ShapeInference::InferSliceShape(matrix_shape, {127, 0}, {129, 2});
ShapeInference::InferSliceShape(matrix_shape, {127, 0}, {129, 2}, {1, 1});
ASSERT_FALSE(inferred_status.ok());
ASSERT_EQ(tensorflow::error::INVALID_ARGUMENT,
inferred_status.status().code());
@ -700,7 +727,7 @@ TEST_F(ShapeInferenceTest, InferOobSliceShapeRank2) {
TEST_F(ShapeInferenceTest, InferSliceShapeRank1) {
Shape vector_shape = ShapeUtil::MakeShape(F32, {17});
auto inferred_status =
ShapeInference::InferSliceShape(vector_shape, {2}, {4});
ShapeInference::InferSliceShape(vector_shape, {2}, {4}, {1});
ASSERT_TRUE(inferred_status.ok());
Shape inferred = inferred_status.ValueOrDie();
ASSERT_TRUE(ShapeUtil::Equal(inferred, ShapeUtil::MakeShape(F32, {2})));

View File

@ -584,7 +584,7 @@ class FusionPointsToAnalysisTest : public TuplePointsToAnalysisTest {
if (add_additional_gte0_user) {
// Create 'slice' as an additional user of 'input'.
auto slice = builder.AddInstruction(
HloInstruction::CreateSlice(update_shape, input, {0}, {3}));
HloInstruction::CreateSlice(update_shape, input, {0}, {3}, {1}));
// Modify 'update' to take 'slice' output.
update = builder.AddInstruction(HloInstruction::CreateBinary(
update_shape, HloOpcode::kAdd, update, slice));

View File

@ -744,7 +744,8 @@ StatusOr<ComputationDataHandle> UserComputation::AddSliceInstruction(
Shape new_shape,
ShapeInference::InferSliceShape(
operand->output_shape(), AsInt64Slice(slice_request.start_indices()),
AsInt64Slice(slice_request.limit_indices())));
AsInt64Slice(slice_request.limit_indices()),
AsInt64Slice(slice_request.stride())));
ComputationDataHandle handle = CreateComputationDataHandle();
@ -2393,7 +2394,8 @@ void ComputationLowerer::Visit(
hlo_instruction = add_instruction(HloInstruction::CreateSlice(
request.output_shape(), operand,
AsInt64Slice(slice_request.start_indices()),
AsInt64Slice(slice_request.limit_indices())));
AsInt64Slice(slice_request.limit_indices()),
AsInt64Slice(slice_request.stride())));
break;
}

View File

@ -1853,7 +1853,7 @@ TEST_F(ArrayElementwiseOpTest, ImplictBroadcastInFusedExpressions) {
auto x = builder.Parameter(0, x_literal->shape(), "x");
auto y = builder.Parameter(1, y_literal->shape(), "y");
auto slice = builder.Slice(x, {1}, {2});
auto slice = builder.Slice(x, {1}, {2}, {1});
builder.Sub(slice, y);
ComputeAndCompareR1<float>(&builder, {-2, -3}, {x_data.get(), y_data.get()},

View File

@ -365,9 +365,9 @@ XLA_TEST_F(DotOperationTest, BatchMatMul) {
std::vector<xla::ComputationDataHandle> out_slices;
for (int i = 0; i < 4; ++i) {
// Slice off individual matrices and reshape to 2D tensors.
auto x_slice = builder.Slice(x_flat, {i, 0, 0}, {i + 1, 2, 2});
auto x_slice = builder.Slice(x_flat, {i, 0, 0}, {i + 1, 2, 2}, {1, 1, 1});
x_slice = builder.Reshape(x_slice, {0, 1, 2}, {2, 2});
auto y_slice = builder.Slice(y_flat, {i, 0, 0}, {i + 1, 2, 2});
auto y_slice = builder.Slice(y_flat, {i, 0, 0}, {i + 1, 2, 2}, {1, 1, 1});
y_slice = builder.Reshape(y_slice, {0, 1, 2}, {2, 2});
auto out = builder.Dot(x_slice, y_slice);

View File

@ -210,7 +210,7 @@ XLA_TEST_F(FusionTest, Test) {
HloInstruction::CreateTernary(ShapeUtil::MakeShape(F32, {2, 3}),
HloOpcode::kSelect, const10, add8, const9));
auto slice12 = builder.AddInstruction(HloInstruction::CreateSlice(
ShapeUtil::MakeShape(F32, {2, 1}), select11, {0, 1}, {2, 2}));
ShapeUtil::MakeShape(F32, {2, 1}), select11, {0, 1}, {2, 2}, {1, 1}));
// CreateFusionInstruction needs the `instructions_to_fuse` argument in
// reverse topological order, so the first element in `instructions_to_fuse`
// must be the root.

View File

@ -36,7 +36,7 @@ XLA_TEST_F(SliceTest, Slice2D) {
ComputationBuilder builder(client_, "slice_2d");
auto original = builder.ConstantR2<float>(
{{1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}, {10.0, 11.0, 12.0}});
builder.Slice(original, {2, 1}, {4, 3});
builder.Slice(original, {2, 1}, {4, 3}, {1, 1});
Array2D<float> expected({{8.0f, 9.0f}, {11.0f, 12.0f}});
ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.000001));
@ -47,7 +47,7 @@ XLA_TEST_F(SliceTest, Slice3D) {
Array3D<float> array_3d(
{{{1.0f, 2.0f}, {3.0f, 4.0f}}, {{5.0f, 6.0f}, {7.0f, 8.0f}}});
auto original = builder.ConstantR3FromArray3D<float>(array_3d);
builder.Slice(original, {0, 0, 1}, {2, 1, 2});
builder.Slice(original, {0, 0, 1}, {2, 1, 2}, {1, 1, 1});
Array3D<float> expected_3d({{{2.0f}}, {{6.0f}}});
ComputeAndCompareR3<float>(&builder, expected_3d, {}, ErrorSpec(0.000001));

View File

@ -325,7 +325,7 @@ XLA_TEST_F(ParamsTest, R2_2x2_TryToPassReverseLayoutToParameter) {
ComputationBuilder builder(client_, TestName());
auto input = builder.Parameter(0, original, "input");
// Use the slice operator to get an off-diagonal element.
builder.Slice(input, {0, 1}, {1, 2});
builder.Slice(input, {0, 1}, {1, 2}, {1, 1});
std::unique_ptr<GlobalData> data =
client_->TransferToServer(*literal).ConsumeValueOrDie();

View File

@ -44,7 +44,7 @@ class SliceTest : public ClientLibraryTestBase {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR1<NativeT>(constant);
builder.Slice(original, {2}, {4});
builder.Slice(original, {2}, {4}, {1});
const std::vector<NativeT> expected = {static_cast<NativeT>(2),
static_cast<NativeT>(3)};
@ -55,7 +55,7 @@ class SliceTest : public ClientLibraryTestBase {
XLA_TEST_F(SliceTest, SliceZeroToZeroF32) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR1<float>({});
builder.Slice(original, {0}, {0});
builder.Slice(original, {0}, {0}, {1});
ComputeAndCompareR1<float>(&builder, {}, {});
}
@ -64,7 +64,7 @@ XLA_TEST_F(SliceTest, SliceTenToZeroF32) {
ComputationBuilder builder(client_, TestName());
std::vector<float> constant(10, 0.3);
auto original = builder.ConstantR1<float>(constant);
builder.Slice(original, {7}, {7});
builder.Slice(original, {7}, {7}, {1});
ComputeAndCompareR1<float>(&builder, {}, {});
}
@ -87,7 +87,7 @@ TEST_F(SliceTest, SliceTenToTen) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR1<float>(values);
builder.Slice(original, {0}, {10});
builder.Slice(original, {0}, {10}, {1});
ComputeAndCompareR1<float>(&builder, values, {}, ErrorSpec(0.000001));
}
@ -98,7 +98,7 @@ TEST_F(SliceTest, SliceLastFourOf1024) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR1<float>(values);
builder.Slice(original, {1024 - 4}, {1024});
builder.Slice(original, {1024 - 4}, {1024}, {1});
const std::vector<float> expected = {1020, 1021, 1022, 1023};
ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.000001));
@ -112,7 +112,7 @@ TEST_F(SliceTest, DISABLED_SliceUnaligned1024In4096Values) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR1<float>(values);
builder.Slice(original, {7}, {7 + 1024});
builder.Slice(original, {7}, {7 + 1024}, {1});
std::vector<float> expected(1024);
std::iota(values.begin(), values.end(), 7.0);
@ -122,7 +122,7 @@ TEST_F(SliceTest, DISABLED_SliceUnaligned1024In4096Values) {
XLA_TEST_F(SliceTest, Slice0x0to0x0F32) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(Array2D<float>(0, 0));
builder.Slice(original, {0, 0}, {0, 0});
builder.Slice(original, {0, 0}, {0, 0}, {1, 1});
ComputeAndCompareR2<float>(&builder, Array2D<float>(0, 0), {});
}
@ -130,7 +130,7 @@ XLA_TEST_F(SliceTest, Slice0x0to0x0F32) {
XLA_TEST_F(SliceTest, Slice0x20to0x5F32) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(Array2D<float>(0, 20));
builder.Slice(original, {0, 15}, {0, 20});
builder.Slice(original, {0, 15}, {0, 20}, {1, 1});
ComputeAndCompareR2<float>(&builder, Array2D<float>(0, 5), {});
}
@ -138,7 +138,7 @@ XLA_TEST_F(SliceTest, Slice0x20to0x5F32) {
XLA_TEST_F(SliceTest, Slice3x0to2x0F32) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(Array2D<float>(3, 0));
builder.Slice(original, {1, 0}, {3, 0});
builder.Slice(original, {1, 0}, {3, 0}, {1, 1});
ComputeAndCompareR2<float>(&builder, Array2D<float>(2, 0), {});
}
@ -153,7 +153,7 @@ XLA_TEST_F(SliceTest, SliceQuadrantOf256x256) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(values);
builder.Slice(original, {128, 128}, {256, 256});
builder.Slice(original, {128, 128}, {256, 256}, {1, 1});
Array2D<float> expected(128, 128);
for (int row = 0; row < 128; ++row) {
@ -171,7 +171,7 @@ TEST_F(SliceTest, Slice_1x4096_To_1x1024) {
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(values);
builder.Slice(original, {0, 3072}, {1, 4096});
builder.Slice(original, {0, 3072}, {1, 4096}, {1, 1});
Array2D<float> expected(1, 1024);
std::iota(expected.data(), expected.data() + 1024, 3072.0);
@ -192,7 +192,7 @@ TEST_F(SliceTest, Slice_16x4_To_16x2) {
}
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR2FromArray2D<float>(values);
builder.Slice(original, {0, 0}, {16, 2});
builder.Slice(original, {0, 0}, {16, 2}, {1, 1});
ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.000001));
}
@ -204,7 +204,7 @@ TEST_F(SliceTest, SliceR4ThreeDimsMiddleMinor) {
ReferenceUtil::Slice4D(values, {{1, 0, 8, 0}}, {{2, 2, 16, 128}});
ComputationBuilder builder(client_, TestName());
auto original = builder.ConstantR4FromArray4D(values);
builder.Slice(original, {1, 0, 8, 0}, {2, 2, 16, 128});
builder.Slice(original, {1, 0, 8, 0}, {2, 2, 16, 128}, {1, 1, 1, 1});
ComputeAndCompareR4(&builder, *expected, {}, ErrorSpec(0.000001));
}
@ -213,6 +213,7 @@ struct R2Spec {
int64 input_dim1;
std::array<int64, 2> slice_starts;
std::array<int64, 2> slice_limits;
std::array<int64, 2> slice_strides;
Layout layout;
};
@ -228,7 +229,7 @@ TEST_P(SliceR2Test, DoIt) {
ComputationBuilder builder(client_, TestName());
auto a = builder.ConstantR2FromArray2D<int32>(input);
builder.Slice(a, spec.slice_starts, spec.slice_limits);
builder.Slice(a, spec.slice_starts, spec.slice_limits, spec.slice_strides);
std::unique_ptr<Array2D<int32>> expected =
ReferenceUtil::Slice2D(input, spec.slice_starts, spec.slice_limits);
@ -239,19 +240,23 @@ TEST_P(SliceR2Test, DoIt) {
INSTANTIATE_TEST_CASE_P(
SliceR2TestInstantiation, SliceR2Test,
::testing::Values(
R2Spec {4, 12, {{0, 3}}, {{4, 6}}, LayoutUtil::MakeLayout({0, 1})},
R2Spec {4, 12, {{0, 3}}, {{4, 6}}, LayoutUtil::MakeLayout({1, 0})},
R2Spec {16, 4, {{0, 2}}, {{16, 4}}, LayoutUtil::MakeLayout({0, 1})},
R2Spec {16, 4, {{0, 2}}, {{16, 4}}, LayoutUtil::MakeLayout({1, 0})},
R2Spec {256, 400, {{0, 300}}, {{256, 400}},
R2Spec {4, 12, {{0, 3}}, {{4, 6}}, {{1, 1}},
LayoutUtil::MakeLayout({0, 1})},
R2Spec {4, 12, {{0, 3}}, {{4, 6}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {500, 400, {{111, 123}}, {{300, 257}},
R2Spec {16, 4, {{0, 2}}, {{16, 4}}, {{1, 1}},
LayoutUtil::MakeLayout({0, 1})},
R2Spec {16, 4, {{0, 2}}, {{16, 4}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {500, 400, {{111, 123}}, {{300, 400}},
R2Spec {256, 400, {{0, 300}}, {{256, 400}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {384, 512, {{128, 256}}, {{256, 384}},
R2Spec {500, 400, {{111, 123}}, {{300, 257}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {357, 512, {{111, 256}}, {{301, 384}},
R2Spec {500, 400, {{111, 123}}, {{300, 400}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {384, 512, {{128, 256}}, {{256, 384}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})},
R2Spec {357, 512, {{111, 256}}, {{301, 384}}, {{1, 1}},
LayoutUtil::MakeLayout({1, 0})}
)
);

View File

@ -666,7 +666,8 @@ TEST_F(WhileTest, WhileWithPrngScalarResult) {
auto build_condition = [this, v6s32](int count) {
ComputationBuilder builder(client_, TestName());
auto prev = builder.Reshape(
builder.Slice(builder.Parameter(0, v6s32, "prev"), {0}, {1}), {0}, {});
builder.Slice(builder.Parameter(0, v6s32, "prev"), {0}, {1}, {1}), {0},
{});
builder.Gt(builder.ConstantR0<int32>(count), prev);
return builder.Build().ConsumeValueOrDie();
};

View File

@ -195,16 +195,24 @@ bool IsPermutation(tensorflow::gtl::ArraySlice<int64> permutation, int64 rank);
// 2. permutation.size() == input.size().
template <template <typename...> class C, typename T>
std::vector<T> Permute(tensorflow::gtl::ArraySlice<int64> permutation,
C<T> input_) {
tensorflow::gtl::ArraySlice<T> input(input_);
CHECK(IsPermutation(permutation, input.size()));
std::vector<T> output(input.size());
C<T> input) {
tensorflow::gtl::ArraySlice<T> data(input);
CHECK(IsPermutation(permutation, data.size()));
std::vector<T> output(data.size());
for (size_t i = 0; i < permutation.size(); ++i) {
output[permutation[i]] = input[i];
output[permutation[i]] = data[i];
}
return output;
}
// Override of the above that works around compile failures with gcc 7.1.1.
// For details see https://github.com/tensorflow/tensorflow/issues/10843
template <typename T>
std::vector<T> Permute(tensorflow::gtl::ArraySlice<int64> permutation,
const std::vector<T>& input) {
return Permute<std::vector, T>(permutation, input);
}
// Inverts a permutation, i.e., output_permutation[input_permutation[i]] = i.
std::vector<int64> InversePermutation(
tensorflow::gtl::ArraySlice<int64> input_permutation);

View File

@ -200,7 +200,7 @@ message OpMetadata {
string op_name = 2;
// Indicate a file and line that this op is associated to in a user's program.
//
// e.g. it could be be the file and line of user code that generated the op.
// e.g. it could be the file and line of user code that generated the op.
string source_file = 3;
int32 source_line = 4;
}
@ -369,6 +369,7 @@ message SliceRequest {
ComputationDataHandle operand = 2;
repeated int64 start_indices = 3;
repeated int64 limit_indices = 4;
repeated int64 stride = 5;
}
message DynamicSliceRequest {

View File

@ -17,6 +17,7 @@ package org.tensorflow.contrib.android;
import android.content.res.AssetManager;
import android.os.Trace;
import android.os.Build.VERSION;
import android.text.TextUtils;
import android.util.Log;
import java.io.FileInputStream;
@ -370,9 +371,11 @@ public class TensorFlowInferenceInterface {
private void loadGraph(InputStream is, Graph g) throws IOException {
final long startMs = System.currentTimeMillis();
Trace.beginSection("initializeTensorFlow");
if (VERSION.SDK_INT >= 18) {
Trace.beginSection("initializeTensorFlow");
Trace.beginSection("readGraphDef");
}
Trace.beginSection("readGraphDef");
// TODO(ashankar): Can we somehow mmap the contents instead of copying them?
byte[] graphDef = new byte[is.available()];
final int numBytesRead = is.read(graphDef);
@ -383,17 +386,22 @@ public class TensorFlowInferenceInterface {
+ " of the graph, expected to read "
+ graphDef.length);
}
Trace.endSection();
Trace.beginSection("importGraphDef");
if (VERSION.SDK_INT >= 18) {
Trace.endSection(); // readGraphDef.
Trace.beginSection("importGraphDef");
}
try {
g.importGraphDef(graphDef);
} catch (IllegalArgumentException e) {
throw new IOException("Not a valid TensorFlow Graph serialization: " + e.getMessage());
}
Trace.endSection();
Trace.endSection(); // initializeTensorFlow.
if (VERSION.SDK_INT >= 18) {
Trace.endSection(); // importGraphDef.
Trace.endSection(); // initializeTensorFlow.
}
final long endMs = System.currentTimeMillis();
Log.i(

View File

@ -627,11 +627,6 @@ class MonteCarloCsiszarFDivergenceTest(test.TestCase):
grad = lambda fs: gradients_impl.gradients(fs, s)[0]
[
approx_kl_grad_,
approx_kl_self_normalized_grad_,
approx_kl_score_trick_grad_,
approx_kl_self_normalized_score_trick_grad_,
exact_kl_grad_,
approx_kl_,
approx_kl_self_normalized_,
approx_kl_score_trick_,
@ -643,39 +638,23 @@ class MonteCarloCsiszarFDivergenceTest(test.TestCase):
grad(approx_kl_score_trick),
grad(approx_kl_self_normalized_score_trick),
grad(exact_kl),
approx_kl,
approx_kl_self_normalized,
approx_kl_score_trick,
approx_kl_self_normalized_score_trick,
exact_kl,
])
# Test average divergence.
self.assertAllClose(approx_kl_, exact_kl_,
rtol=0.02, atol=0.)
self.assertAllClose(approx_kl_self_normalized_, exact_kl_,
rtol=0.08, atol=0.)
self.assertAllClose(approx_kl_score_trick_, exact_kl_,
rtol=0.02, atol=0.)
self.assertAllClose(approx_kl_self_normalized_score_trick_, exact_kl_,
rtol=0.08, atol=0.)
# Test average gradient-divergence.
self.assertAllClose(approx_kl_grad_, exact_kl_grad_,
rtol=0.007, atol=0.)
self.assertAllClose(approx_kl_self_normalized_grad_, exact_kl_grad_,
rtol=0.011, atol=0.)
self.assertAllClose(approx_kl_score_trick_grad_, exact_kl_grad_,
rtol=0.018, atol=0.)
self.assertAllClose(
approx_kl_, exact_kl_,
rtol=0.06, atol=0.)
self.assertAllClose(
approx_kl_self_normalized_score_trick_grad_, exact_kl_grad_,
rtol=0.017, atol=0.)
approx_kl_self_normalized_, exact_kl_,
rtol=0.05, atol=0.)
self.assertAllClose(
approx_kl_score_trick_, exact_kl_,
rtol=0.06, atol=0.)
self.assertAllClose(
approx_kl_self_normalized_score_trick_, exact_kl_,
rtol=0.05, atol=0.)
if __name__ == '__main__':

View File

@ -40,8 +40,8 @@ from __future__ import print_function
import numpy as np
from tensorflow.contrib import framework as contrib_framework
from tensorflow.contrib.bayesflow.python.ops import monte_carlo_impl as monte_carlo
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops.distributions import distribution
@ -750,7 +750,7 @@ def monte_carlo_csiszar_f_divergence(
```none
D_f[p(X), q(X)] := E_{q(X)}[ f( p(X) / q(X) ) ]
~= m**-1 sum_j^m f( p(x_j) / q(x_j) ),
where x_j ~iid q(X)
where x_j ~iid q(x)
```
Tricks: Reparameterization and Score-Gradient
@ -759,8 +759,8 @@ def monte_carlo_csiszar_f_divergence(
parameterless distribution (e.g.,
`Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and
expectation, i.e.,
`grad[Avg{ s_i : i=1...n }] = Avg{ grad[s_i] : i=1...n }` where `S_n=Avg{s_i}`
and `s_i = f(x_i), x_i ~iid q(X)`.
`nabla Avg{ s_i : i=1...n } = Avg{ nabla s_i : i=1...n }` where `S_n=Avg{s_i}`
and `s_i = f(x_i), x_i ~ q`.
However, if q is not reparameterized, TensorFlow's gradient will be incorrect
since the chain-rule stops at samples of unreparameterized distributions. In
@ -768,17 +768,22 @@ def monte_carlo_csiszar_f_divergence(
gradient, i.e.,
```none
grad[ E_q[f(X)] ]
= grad[ int dx q(x) f(x) ]
= int dx grad[ q(x) f(x) ]
= int dx [ q'(x) f(x) + q(x) f'(x) ]
nabla E_q[f(X)]
= nabla int dx q(x) f(x)
= int dx nabla [ q(x) f(x) ]
= int dx q'(x) f(x) + q(x) f'(x)
= int dx q(x) [q'(x) / q(x) f(x) + f'(x) ]
= int dx q(x) grad[ f(x) q(x) / stop_grad[q(x)] ]
= E_q[ grad[ f(x) q(x) / stop_grad[q(x)] ] ]
= int dx q(x) nabla [ log(q(x)) stopgrad[f(x)] + f(x) ]
= E_q[ nabla [ log(q(X)) stopgrad[f(X)] + f(X) ] ]
~= Avg{ log(q(y_i)) stopgrad[f(y_i)] + f(y_i) : y_i = stopgrad[x_i], x_i ~ q}
```
Unless `q.reparameterization_type != distribution.FULLY_REPARAMETERIZED` it is
usually preferable to set `use_reparametrization = True`.
usually preferable to `use_reparametrization = True`.
Warning: using `use_reparametrization = False` will mean that the result is
*not* the Csiszar f-Divergence. However its expected gradient *is* the
gradient of the Csiszar f-Divergence.
Example Application:
@ -812,7 +817,10 @@ def monte_carlo_csiszar_f_divergence(
Returns:
monte_carlo_csiszar_f_divergence: Floating-type `Tensor` Monte Carlo
approximation of the Csiszar f-Divergence.
approximation of the Csiszar f-Divergence. Warning: using
`use_reparametrization = False` will mean that the result is *not* the
Csiszar f-Divergence. However its expected gradient *is* the actual
gradient of the Csiszar f-Divergence.
Raises:
ValueError: if `q` is not a reparameterized distribution and
@ -823,16 +831,24 @@ def monte_carlo_csiszar_f_divergence(
to parameters) is valid.
"""
with ops.name_scope(name, "monte_carlo_csiszar_f_divergence", [num_draws]):
if (use_reparametrization and
q.reparameterization_type != distribution.FULLY_REPARAMETERIZED):
x = q.sample(num_draws, seed=seed)
if use_reparametrization:
# TODO(jvdillon): Consider only raising an exception if the gradient is
# requested.
raise ValueError(
"Distribution `q` must be reparameterized, i.e., a diffeomorphic "
"transformation of a parameterless distribution. (Otherwise this "
"function has a biased gradient.)")
return monte_carlo.expectation_v2(
f=lambda x: f(p.log_prob(x) - q.log_prob(x)),
samples=q.sample(num_draws, seed=seed),
log_prob=q.log_prob,
use_reparametrization=use_reparametrization)
if q.reparameterization_type != distribution.FULLY_REPARAMETERIZED:
raise ValueError(
"Distribution `q` must be reparameterized, i.e., a diffeomorphic "
"transformation of a parameterless distribution. (Otherwise this "
"function has a biased gradient.)")
return math_ops.reduce_mean(f(p.log_prob(x) - q.log_prob(x)), axis=0)
else:
x = array_ops.stop_gradient(x)
logqx = q.log_prob(x)
fx = f(p.log_prob(x) - logqx)
# Alternatively we could have returned:
# reduce_mean(fx * exp(logqx) / stop_gradient(exp(logqx)), axis=0)
# This is nice because it means the result is exactly the Csiszar
# f-Divergence yet the gradient is unbiased. However its numerically
# unstable since the q is not in log-domain.
return math_ops.reduce_mean(logqx * array_ops.stop_gradient(fx) + fx,
axis=0)

View File

@ -74,7 +74,7 @@ if(WIN32)
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} /ignore:4049 /ignore:4197 /ignore:4217 /ignore:4221")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /ignore:4049 /ignore:4197 /ignore:4217 /ignore:4221")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /MP")
set(CMAKE_CXX_FLAGS_DEBUG "/D_DEBUG /MDd /Ob0")
set(CMAKE_CXX_FLAGS_DEBUG "/D_DEBUG /MDd /Ob2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /D_ITERATOR_DEBUG_LEVEL=0")
set(CMAKE_CXX_FLAGS_MINSIZEREL "${CMAKE_CXX_FLAGS_MINSIZEREL} /D_ITERATOR_DEBUG_LEVEL=0")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} /D_ITERATOR_DEBUG_LEVEL=0")

View File

@ -204,7 +204,6 @@ add_python_module("tensorflow/python/debug/examples")
add_python_module("tensorflow/python/debug/lib")
add_python_module("tensorflow/python/debug/wrappers")
add_python_module("tensorflow/python/estimator")
add_python_module("tensorflow/python/estimator/canned")
add_python_module("tensorflow/python/estimator/export")
add_python_module("tensorflow/python/estimator/inputs")
add_python_module("tensorflow/python/estimator/inputs/queues")

View File

@ -120,7 +120,7 @@ class _TriLPlusVDVTLightweightOperatorPD(object):
Doesn't actually do the sqrt! Named as such to agree with API.
To compute (M + V D V.T), we use the the Woodbury matrix identity:
To compute (M + V D V.T), we use the Woodbury matrix identity:
inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
where,
C = inv(D) + V.T inv(M) V.
@ -166,7 +166,7 @@ class _TriLPlusVDVTLightweightOperatorPD(object):
def _woodbury_sandwiched_term(self):
"""Computes the sandwiched term in the Woodbury identity.
Computes the "`C`" in the the identity:
Computes the "`C`" in the identity:
inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
where,
C = inv(D) + V.T inv(M) V.

View File

@ -52,7 +52,7 @@ class RelaxedBernoulli(transformed_distribution.TransformedDistribution):
the RelaxedBernoulli can suffer from underflow issues. In many case loss
functions such as these are invariant under invertible transformations of
the random variables. The KL divergence, found in the variational autoencoder
loss, is an example. Because RelaxedBernoullis are sampled by by a Logistic
loss, is an example. Because RelaxedBernoullis are sampled by a Logistic
random variable followed by a `tf.sigmoid` op, one solution is to treat
the Logistic as the random variable and `tf.sigmoid` as downstream. The
KL divergences of two Logistics, which are always followed by a `tf.sigmoid`

View File

@ -47,7 +47,7 @@ def percentile(x,
"""Compute the `q`-th percentile of `x`.
Given a vector `x`, the `q`-th percentile of `x` is the value `q / 100` of the
way from the minimum to the maximum in in a sorted copy of `x`.
way from the minimum to the maximum in a sorted copy of `x`.
The values and distances of the two nearest neighbors as well as the
`interpolation` parameter will determine the percentile if the normalized

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Vectorized Laplace distribution class, directly using LinearOpeartor."""
"""Vectorized Laplace distribution class, directly using LinearOperator."""
from __future__ import absolute_import
from __future__ import division

View File

@ -446,7 +446,7 @@ class Transformer(object):
# TODO(fkp): return a subgraph?
op_, op_outputs_ = self.transform_op_handler(info, op)
if op is op_:
raise ValueError("In-place tranformation not allowed.")
raise ValueError("In-place transformation not allowed.")
# Process op.
info.transformed_ops[op] = op_

View File

@ -3261,7 +3261,7 @@ def conv2d(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
dilation_rate: tuple of 2 integers.
Returns:
@ -3309,7 +3309,7 @@ def conv2d_transpose(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
Returns:
A tensor, result of transposed 2D convolution.
@ -3395,7 +3395,7 @@ def conv3d(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
dilation_rate: tuple of 3 integers.
Returns:

View File

@ -107,7 +107,7 @@ class Dropout(tf_core_layers.Dropout, Layer):
self.supports_masking = True
# Inheritance call order:
# 1) tf.layers.Dropout, 2) keras.layers.Layer, 3) tf.layers.Layer
super(Dropout, self).__init__(**kwargs)
super(Dropout, self).__init__(rate=rate, noise_shape=noise_shape, seed=seed, **kwargs)
def call(self, inputs, training=None):
if training is None:

View File

@ -985,7 +985,7 @@ class LSTM(Recurrent):
References:
- [Long short-term
memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
memory](http://www.bioinf.jku.at/publications/older/2604.pdf)
(original 1997 paper)
- [Supervised sequence labeling with recurrent neural
networks](http://www.cs.toronto.edu/~graves/preprint.pdf)

View File

@ -105,7 +105,7 @@ class TestModelSaving(test.TestCase):
out2 = model.predict(x)
self.assertAllClose(out, out2, atol=1e-05)
def test_fuctional_model_saving(self):
def test_functional_model_saving(self):
if h5py is None:
return # Skip test if models cannot be saved.

View File

@ -1467,7 +1467,8 @@ def fully_connected(inputs,
ValueError: If x has rank less than 2 or if its last dimension is not set.
"""
if not isinstance(num_outputs, six.integer_types):
raise ValueError('num_outputs should be int or long, got %s.', num_outputs)
raise ValueError(
'num_outputs should be int or long, got %s.' % (num_outputs,))
layer_variable_getter = _build_variable_getter({'bias': 'biases',
'kernel': 'weights'})

View File

@ -52,8 +52,8 @@ LABEL_DIMENSION = 3 # Dimensionality of regression labels.
def _train_test_split(features_and_labels):
features, labels = features_and_labels
train_set = (features[:len(features) / 2], labels[:len(features) / 2])
test_set = (features[len(features) / 2:], labels[len(features) / 2:])
train_set = (features[:int(len(features) / 2)], labels[:int(len(features) / 2)])
test_set = (features[int(len(features) / 2):], labels[int(len(features) / 2):])
return train_set, test_set

View File

@ -729,7 +729,7 @@ class LinearClassifierTest(test.TestCase):
self.assertLess(loss, 0.07)
def testSdcaOptimizerRealValuedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and real valued features."""
"""Tests LinearClassifier with SDCAOptimizer and real valued features."""
def input_fn():
return {
@ -776,7 +776,7 @@ class LinearClassifierTest(test.TestCase):
self.assertLess(loss, 0.05)
def testSdcaOptimizerBucketizedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and bucketized features."""
"""Tests LinearClassifier with SDCAOptimizer and bucketized features."""
def input_fn():
return {
@ -802,7 +802,7 @@ class LinearClassifierTest(test.TestCase):
self.assertGreater(scores['accuracy'], 0.9)
def testSdcaOptimizerSparseFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and sparse features."""
"""Tests LinearClassifier with SDCAOptimizer and sparse features."""
def input_fn():
return {
@ -833,7 +833,7 @@ class LinearClassifierTest(test.TestCase):
self.assertGreater(scores['accuracy'], 0.9)
def testSdcaOptimizerWeightedSparseFeatures(self):
"""LinearClasssifier with SDCAOptimizer and weighted sparse features."""
"""LinearClassifier with SDCAOptimizer and weighted sparse features."""
def input_fn():
return {
@ -864,7 +864,7 @@ class LinearClassifierTest(test.TestCase):
self.assertGreater(scores['accuracy'], 0.9)
def testSdcaOptimizerCrossedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and crossed features."""
"""Tests LinearClassifier with SDCAOptimizer and crossed features."""
def input_fn():
return {
@ -897,7 +897,7 @@ class LinearClassifierTest(test.TestCase):
self.assertGreater(scores['accuracy'], 0.9)
def testSdcaOptimizerMixedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and a mix of features."""
"""Tests LinearClassifier with SDCAOptimizer and a mix of features."""
def input_fn():
return {
@ -1509,7 +1509,7 @@ class LinearRegressorTest(test.TestCase):
self.assertLess(loss, 0.05)
def testSdcaOptimizerSparseFeaturesWithL1Reg(self):
"""Tests LinearClasssifier with SDCAOptimizer and sparse features."""
"""Tests LinearClassifier with SDCAOptimizer and sparse features."""
def input_fn():
return {
@ -1581,7 +1581,7 @@ class LinearRegressorTest(test.TestCase):
self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm)
def testSdcaOptimizerBiasOnly(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""
def input_fn():
"""Testing the bias weight when it's the only feature present.
@ -1614,7 +1614,7 @@ class LinearRegressorTest(test.TestCase):
regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1)
def testSdcaOptimizerBiasAndOtherColumns(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""
def input_fn():
"""Testing the bias weight when there are other features present.
@ -1676,7 +1676,7 @@ class LinearRegressorTest(test.TestCase):
regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05)
def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""
def input_fn():
"""Testing the bias weight when there are other features present.

View File

@ -123,7 +123,7 @@ class ModelFnopsTest(test.TestCase):
self.assertAllEqual(predictions["probabilities"].eval(),
regression_output.value.eval())
def testEstimatorSpec_export_classsification(self):
def testEstimatorSpec_export_classification(self):
predictions = self.create_predictions()
output_alternatives = {"classification_head": (
constants.ProblemType.CLASSIFICATION, predictions)}
@ -143,7 +143,7 @@ class ModelFnopsTest(test.TestCase):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())
def testEstimatorSpec_export_classsification_with_missing_scores(self):
def testEstimatorSpec_export_classification_with_missing_scores(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["scores"]
@ -165,7 +165,7 @@ class ModelFnopsTest(test.TestCase):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())
def testEstimatorSpec_export_classsification_with_missing_scores_proba(self):
def testEstimatorSpec_export_classification_with_missing_scores_proba(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["scores"]
@ -187,7 +187,7 @@ class ModelFnopsTest(test.TestCase):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())
def testEstimatorSpec_export_classsification_with_missing_classes(self):
def testEstimatorSpec_export_classification_with_missing_classes(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["classes"]
@ -208,7 +208,7 @@ class ModelFnopsTest(test.TestCase):
classification_output.scores.eval())
self.assertIsNone(classification_output.classes)
def testEstimatorSpec_export_classsification_with_nonstring_classes(self):
def testEstimatorSpec_export_classification_with_nonstring_classes(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
output_alternatives_predictions["classes"] = constant_op.constant(

View File

@ -63,7 +63,7 @@ def linear_regression(x, y, init_mean=None, init_stddev=1.0):
x: tensor or placeholder for input features.
y: tensor or placeholder for labels.
init_mean: the mean value to use for initialization.
init_stddev: the standard devation to use for initialization.
init_stddev: the standard deviation to use for initialization.
Returns:
Predictions and loss tensors.
@ -124,7 +124,7 @@ def logistic_regression(x,
will check if graph contains tensor `class_weight:0`.
If that is not provided either all ones are used.
init_mean: the mean value to use for initialization.
init_stddev: the standard devation to use for initialization.
init_stddev: the standard deviation to use for initialization.
Returns:
Predictions and loss tensors.

View File

@ -208,7 +208,7 @@ def index_to_string_table_from_tensor(mapping, default_value="UNK", name=None):
Sample Usages:
```python
mapping_string = tf.constant(["emerson", "lake", "palmer")
mapping_string = tf.constant(["emerson", "lake", "palmer"])
indices = tf.constant([1, 5], tf.int64)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
mapping_string, default_value="UNKNOWN")
@ -260,7 +260,11 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None):
For example:
```python
<<<<<<< HEAD
mapping_string = tf.constant(["emerson", "lake", "palmer"])
=======
mapping_string = tf.constant(["emerson", "lake", "palmer")
>>>>>>> 338a7ead4475d6b97b420d6d1c56ff66815e3e7b
indices = tf.constant([1, 5], tf.int64)
values = tf.contrib.lookup.index_to_string(
indices, mapping=mapping_string, default_value="UNKNOWN")

View File

@ -23,7 +23,7 @@
# Make sure we're in the correct directory, at the root of the source tree.
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
WORKSPACE="${SCRIPT_DIR}/../../../"
cd ${WORKSPACE}
cd ${WORKSPACE} || exit 1
DOCKER_IMG_NAME="tf-make-base"
DOCKER_CONTEXT_PATH="${WORKSPACE}tensorflow/contrib/makefile/"

View File

@ -27,7 +27,7 @@ cc_prefix="${CC_PREFIX}"
usage() {
echo "Usage: $(basename "$0") [-a:c]"
echo "-a [Architecture] Architecture of target android [default=armeabi-v7a] \
(supported archtecture list: \
(supported architecture list: \
arm64-v8a armeabi armeabi-v7a armeabi-v7a-hard mips mips64 x86 x86_64)"
echo "-c Clean before building protobuf for target"
echo "\"NDK_ROOT\" should be defined as an environment variable."
@ -130,7 +130,7 @@ elif [[ ${ARCHITECTURE} == "x86_64" ]]; then
sysroot_arch="x86_64"
bin_prefix="x86_64-linux-android"
else
echo "archtecture ${arcitecture} is not supported." 1>&2
echo "architecture ${ARCHITECTURE} is not supported." 1>&2
usage
exit 1
fi

View File

@ -1,4 +1,4 @@
#!/bin/bash -x -e
#!/bin/bash
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -15,6 +15,9 @@
# ==============================================================================
# Builds protobuf 3 for iOS.
set -x
set -e
SCRIPT_DIR=$(dirname $0)
source "${SCRIPT_DIR}/build_helper.subr"
@ -30,17 +33,17 @@ fi
JOB_COUNT="${JOB_COUNT:-$(get_job_count)}"
GENDIR=`pwd`/gen/protobuf_ios/
GENDIR=$(pwd)/gen/protobuf_ios/
LIBDIR=${GENDIR}lib
mkdir -p ${LIBDIR}
OSX_VERSION=darwin14.0.0
IPHONEOS_PLATFORM=`xcrun --sdk iphoneos --show-sdk-platform-path`
IPHONEOS_SYSROOT=`xcrun --sdk iphoneos --show-sdk-path`
IPHONESIMULATOR_PLATFORM=`xcrun --sdk iphonesimulator --show-sdk-platform-path`
IPHONESIMULATOR_SYSROOT=`xcrun --sdk iphonesimulator --show-sdk-path`
IOS_SDK_VERSION=`xcrun --sdk iphoneos --show-sdk-version`
IPHONEOS_PLATFORM=$(xcrun --sdk iphoneos --show-sdk-platform-path)
IPHONEOS_SYSROOT=$(xcrun --sdk iphoneos --show-sdk-path)
IPHONESIMULATOR_PLATFORM=$(xcrun --sdk iphonesimulator --show-sdk-platform-path)
IPHONESIMULATOR_SYSROOT=$(xcrun --sdk iphonesimulator --show-sdk-path)
IOS_SDK_VERSION=$(xcrun --sdk iphoneos --show-sdk-version)
MIN_SDK_VERSION=8.0
CFLAGS="-DNDEBUG -Os -pipe -fPIC -fno-exceptions"

View File

@ -20,7 +20,7 @@ source "${SCRIPT_DIR}/build_helper.subr"
JOB_COUNT="${JOB_COUNT:-$(get_job_count)}"
function less_than_required_version() {
echo $1 | (IFS=. read major minor micro
echo $1 | (IFS=. read -r major minor micro
if [ $major -ne $2 ]; then
[ $major -lt $2 ]
elif [ $minor -ne $3 ]; then
@ -31,7 +31,7 @@ function less_than_required_version() {
)
}
ACTUAL_XCODE_VERSION=`xcodebuild -version | head -n 1 | sed 's/Xcode //'`
ACTUAL_XCODE_VERSION=$(xcodebuild -version | head -n 1 | sed 's/Xcode //')
REQUIRED_XCODE_VERSION=7.3.0
if less_than_required_version $ACTUAL_XCODE_VERSION 7 3 0
then

View File

@ -15,15 +15,15 @@
# ==============================================================================
# Builds protobuf 3 for iOS.
cd tensorflow/contrib/makefile
cd tensorflow/contrib/makefile || exit 1
GENDIR=`pwd`/gen/protobuf_pi/
GENDIR=$(pwd)/gen/protobuf_pi/
LIBDIR=${GENDIR}
mkdir -p ${LIBDIR}
CXX=arm-linux-gnueabihf-g++
cd downloads/protobuf
cd downloads/protobuf || exit 1
./autogen.sh
if [ $? -ne 0 ]

View File

@ -7,6 +7,7 @@ licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
load("//tensorflow:tensorflow.bzl", "py_test")
load("//tensorflow:tensorflow.bzl", "tf_gen_op_wrapper_py")
tf_gen_op_wrapper_py(

View File

@ -79,7 +79,7 @@ class CoupledInputForgetGateLSTMCell(rnn_cell_impl.RNNCell):
The default non-peephole implementation is based on:
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
S. Hochreiter and J. Schmidhuber.
"Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.

View File

@ -65,7 +65,9 @@ class GatherTreeTest(test.TestCase):
_ = beams.eval()
def testBadParentValuesOnGPU(self):
if not test.is_gpu_available():
# Only want to run this test on CUDA devices, as gather_tree is not
# registered for SYCL devices.
if not test.is_gpu_available(cuda_only=True):
return
# (max_time = 4, batch_size = 1, beams = 3)
# bad parent in beam 1 time 1; appears as a negative index at time 0

View File

@ -836,7 +836,7 @@ with tf.Session() as sess:
for batch_id in range(num_batches):
sess.run(names_to_updates.values())
metric_values = sess.run(name_to_values.values())
metric_values = sess.run(names_to_values.values())
for metric, value in zip(names_to_values.keys(), metric_values):
print('Metric %s has value: %f' % (metric, value))
```

View File

@ -1,3 +1,26 @@
# tfprof: TensorFlow Profiler and Beyond
# Full Document in tensorflow/tools/tfprof/README.md
Author: Xin Pan (xpan@google.com, github: panyx0718), Jon Shlens, Yao Zhang
Consultants: Jon Shlens, Pete Warden
###Major Features
1. Measure model parameters, float operations, tensor shapes.
2. Profile op execution times, requested memory size and device placement.
3. Inspect checkpoint tensors' shapes and their values.
4. Selectively group, filter, account and order ops.
####tfprof supports 3 views to organize TensorFlow model profiles
* code view: Stats are associated your Python codes and organized as call stacks.
* scope view: Stats are organized as name scope hierarchies.
* graph view: Stats are organized as Tensorflow Op graph.
####For each view, there are 3 ways to display outputs:
* stdout: Results are written to stdout.
* timeline: Visualized in chrome browser as time series.
* file: Results are dumped to file.

Some files were not shown because too many files have changed in this diff Show More