Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 160172985
This commit is contained in:
parent
ee3eaffe16
commit
0b9b09a853
@ -20544,23 +20544,40 @@ func Requantize(scope *Scope, input tf.Output, input_min tf.Output, input_max tf
|
||||
return op.Output(0), op.Output(1), op.Output(2)
|
||||
}
|
||||
|
||||
// ArgMinAttr is an optional argument to ArgMin.
|
||||
type ArgMinAttr func(optionalAttr)
|
||||
|
||||
// ArgMinOutputType sets the optional output_type attribute to value.
|
||||
// If not specified, defaults to DT_INT64
|
||||
func ArgMinOutputType(value tf.DataType) ArgMinAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["output_type"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the index with the smallest value across dimensions of a tensor.
|
||||
//
|
||||
// Note that in case of ties the identity of the return value is not guaranteed.
|
||||
//
|
||||
// Arguments:
|
||||
//
|
||||
// dimension: int32, 0 <= dimension < rank(input). Describes which dimension
|
||||
// of the input Tensor to reduce across. For vectors, use dimension = 0.
|
||||
func ArgMin(scope *Scope, input tf.Output, dimension tf.Output) (output tf.Output) {
|
||||
// dimension: int32 or int64, 0 <= dimension < rank(input). Describes
|
||||
// which dimension of the input Tensor to reduce across. For vectors,
|
||||
// use dimension = 0.
|
||||
func ArgMin(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMinAttr) (output tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "ArgMin",
|
||||
Input: []tf.Input{
|
||||
input, dimension,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
@ -21818,23 +21835,40 @@ func IsFinite(scope *Scope, x tf.Output) (y tf.Output) {
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// ArgMaxAttr is an optional argument to ArgMax.
|
||||
type ArgMaxAttr func(optionalAttr)
|
||||
|
||||
// ArgMaxOutputType sets the optional output_type attribute to value.
|
||||
// If not specified, defaults to DT_INT64
|
||||
func ArgMaxOutputType(value tf.DataType) ArgMaxAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["output_type"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the index with the largest value across dimensions of a tensor.
|
||||
//
|
||||
// Note that in case of ties the identity of the return value is not guaranteed.
|
||||
//
|
||||
// Arguments:
|
||||
//
|
||||
// dimension: int32, 0 <= dimension < rank(input). Describes which dimension
|
||||
// of the input Tensor to reduce across. For vectors, use dimension = 0.
|
||||
func ArgMax(scope *Scope, input tf.Output, dimension tf.Output) (output tf.Output) {
|
||||
// dimension: int32 or int64, 0 <= dimension < rank(input). Describes
|
||||
// which dimension of the input Tensor to reduce across. For vectors,
|
||||
// use dimension = 0.
|
||||
func ArgMax(scope *Scope, input tf.Output, dimension tf.Output, optional ...ArgMaxAttr) (output tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "ArgMax",
|
||||
Input: []tf.Input{
|
||||
input, dimension,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
|
Loading…
Reference in New Issue
Block a user