Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 168494944
This commit is contained in:
parent
69301f3520
commit
eec4f1b3ac
@ -2466,78 +2466,6 @@ func BitwiseAnd(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) {
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler.
|
||||
type AllCandidateSamplerAttr func(optionalAttr)
|
||||
|
||||
// AllCandidateSamplerSeed sets the optional seed attribute to value.
|
||||
//
|
||||
// value: If either seed or seed2 are set to be non-zero, the random number
|
||||
// generator is seeded by the given seed. Otherwise, it is seeded by a
|
||||
// random seed.
|
||||
// If not specified, defaults to 0
|
||||
func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value.
|
||||
//
|
||||
// value: An second seed to avoid seed collision.
|
||||
// If not specified, defaults to 0
|
||||
func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Generates labels for candidate sampling with a learned unigram distribution.
|
||||
//
|
||||
// See explanations of candidate sampling and the data formats at
|
||||
// go/candidate-sampling.
|
||||
//
|
||||
// For each batch, this op picks a single set of sampled candidate labels.
|
||||
//
|
||||
// The advantages of sampling candidates per-batch are simplicity and the
|
||||
// possibility of efficient dense matrix multiplication. The disadvantage is that
|
||||
// the sampled candidates must be chosen independently of the context and of the
|
||||
// true labels.
|
||||
//
|
||||
// Arguments:
|
||||
// true_classes: A batch_size * num_true matrix, in which each row contains the
|
||||
// IDs of the num_true target_classes in the corresponding original label.
|
||||
// num_true: Number of true labels per context.
|
||||
// num_sampled: Number of candidates to produce.
|
||||
// unique: If unique is true, we sample with rejection, so that all sampled
|
||||
// candidates in a batch are unique. This requires some approximation to
|
||||
// estimate the post-rejection sampling probabilities.
|
||||
//
|
||||
// Returns A vector of length num_sampled, in which each element is
|
||||
// the ID of a sampled candidate.A batch_size * num_true matrix, representing
|
||||
// the number of times each candidate is expected to occur in a batch
|
||||
// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled
|
||||
// candidate representing the number of times the candidate is expected
|
||||
// to occur in a batch of sampled candidates. If unique=true, then this is a
|
||||
// probability.
|
||||
func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "AllCandidateSampler",
|
||||
Input: []tf.Input{
|
||||
true_classes,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0), op.Output(1), op.Output(2)
|
||||
}
|
||||
|
||||
// FixedUnigramCandidateSamplerAttr is an optional argument to FixedUnigramCandidateSampler.
|
||||
type FixedUnigramCandidateSamplerAttr func(optionalAttr)
|
||||
|
||||
@ -7004,6 +6932,194 @@ func ExtractJpegShape(scope *Scope, contents tf.Output, optional ...ExtractJpegS
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler.
|
||||
type AllCandidateSamplerAttr func(optionalAttr)
|
||||
|
||||
// AllCandidateSamplerSeed sets the optional seed attribute to value.
|
||||
//
|
||||
// value: If either seed or seed2 are set to be non-zero, the random number
|
||||
// generator is seeded by the given seed. Otherwise, it is seeded by a
|
||||
// random seed.
|
||||
// If not specified, defaults to 0
|
||||
func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value.
|
||||
//
|
||||
// value: An second seed to avoid seed collision.
|
||||
// If not specified, defaults to 0
|
||||
func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Generates labels for candidate sampling with a learned unigram distribution.
|
||||
//
|
||||
// See explanations of candidate sampling and the data formats at
|
||||
// go/candidate-sampling.
|
||||
//
|
||||
// For each batch, this op picks a single set of sampled candidate labels.
|
||||
//
|
||||
// The advantages of sampling candidates per-batch are simplicity and the
|
||||
// possibility of efficient dense matrix multiplication. The disadvantage is that
|
||||
// the sampled candidates must be chosen independently of the context and of the
|
||||
// true labels.
|
||||
//
|
||||
// Arguments:
|
||||
// true_classes: A batch_size * num_true matrix, in which each row contains the
|
||||
// IDs of the num_true target_classes in the corresponding original label.
|
||||
// num_true: Number of true labels per context.
|
||||
// num_sampled: Number of candidates to produce.
|
||||
// unique: If unique is true, we sample with rejection, so that all sampled
|
||||
// candidates in a batch are unique. This requires some approximation to
|
||||
// estimate the post-rejection sampling probabilities.
|
||||
//
|
||||
// Returns A vector of length num_sampled, in which each element is
|
||||
// the ID of a sampled candidate.A batch_size * num_true matrix, representing
|
||||
// the number of times each candidate is expected to occur in a batch
|
||||
// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled
|
||||
// candidate representing the number of times the candidate is expected
|
||||
// to occur in a batch of sampled candidates. If unique=true, then this is a
|
||||
// probability.
|
||||
func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "AllCandidateSampler",
|
||||
Input: []tf.Input{
|
||||
true_classes,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0), op.Output(1), op.Output(2)
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegAttr is an optional argument to DecodeAndCropJpeg.
|
||||
type DecodeAndCropJpegAttr func(optionalAttr)
|
||||
|
||||
// DecodeAndCropJpegChannels sets the optional channels attribute to value.
|
||||
//
|
||||
// value: Number of color channels for the decoded image.
|
||||
// If not specified, defaults to 0
|
||||
func DecodeAndCropJpegChannels(value int64) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["channels"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegRatio sets the optional ratio attribute to value.
|
||||
//
|
||||
// value: Downscaling ratio.
|
||||
// If not specified, defaults to 1
|
||||
func DecodeAndCropJpegRatio(value int64) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["ratio"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegFancyUpscaling sets the optional fancy_upscaling attribute to value.
|
||||
//
|
||||
// value: If true use a slower but nicer upscaling of the
|
||||
// chroma planes (yuv420/422 only).
|
||||
// If not specified, defaults to true
|
||||
func DecodeAndCropJpegFancyUpscaling(value bool) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["fancy_upscaling"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value.
|
||||
//
|
||||
// value: If true try to recover an image from truncated input.
|
||||
// If not specified, defaults to false
|
||||
func DecodeAndCropJpegTryRecoverTruncated(value bool) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["try_recover_truncated"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegAcceptableFraction sets the optional acceptable_fraction attribute to value.
|
||||
//
|
||||
// value: The minimum required fraction of lines before a truncated
|
||||
// input is accepted.
|
||||
// If not specified, defaults to 1
|
||||
func DecodeAndCropJpegAcceptableFraction(value float32) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["acceptable_fraction"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeAndCropJpegDctMethod sets the optional dct_method attribute to value.
|
||||
//
|
||||
// value: string specifying a hint about the algorithm used for
|
||||
// decompression. Defaults to "" which maps to a system-specific
|
||||
// default. Currently valid values are ["INTEGER_FAST",
|
||||
// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal
|
||||
// jpeg library changes to a version that does not have that specific
|
||||
// option.)
|
||||
// If not specified, defaults to ""
|
||||
func DecodeAndCropJpegDctMethod(value string) DecodeAndCropJpegAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dct_method"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Decode and Crop a JPEG-encoded image to a uint8 tensor.
|
||||
//
|
||||
// The attr `channels` indicates the desired number of color channels for the
|
||||
// decoded image.
|
||||
//
|
||||
// Accepted values are:
|
||||
//
|
||||
// * 0: Use the number of channels in the JPEG-encoded image.
|
||||
// * 1: output a grayscale image.
|
||||
// * 3: output an RGB image.
|
||||
//
|
||||
// If needed, the JPEG-encoded image is transformed to match the requested number
|
||||
// of color channels.
|
||||
//
|
||||
// The attr `ratio` allows downscaling the image by an integer factor during
|
||||
// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
|
||||
// downscaling the image later.
|
||||
//
|
||||
//
|
||||
// It is equivalent to a combination of decode and crop, but much faster by only
|
||||
// decoding partial jpeg image.
|
||||
//
|
||||
// Arguments:
|
||||
// contents: 0-D. The JPEG-encoded image.
|
||||
// crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width].
|
||||
//
|
||||
// Returns 3-D with shape `[height, width, channels]`..
|
||||
func DecodeAndCropJpeg(scope *Scope, contents tf.Output, crop_window tf.Output, optional ...DecodeAndCropJpegAttr) (image tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "DecodeAndCropJpeg",
|
||||
Input: []tf.Input{
|
||||
contents, crop_window,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// DecodeJpegAttr is an optional argument to DecodeJpeg.
|
||||
type DecodeJpegAttr func(optionalAttr)
|
||||
|
||||
@ -7092,6 +7208,7 @@ func DecodeJpegDctMethod(value string) DecodeJpegAttr {
|
||||
// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
|
||||
// downscaling the image later.
|
||||
//
|
||||
//
|
||||
// This op also supports decoding PNGs and non-animated GIFs since the interface is
|
||||
// the same, though it is cleaner to use `tf.image.decode_image`.
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user