diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index 1149ac65573..9167f60e530 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -2466,78 +2466,6 @@ func BitwiseAnd(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { return op.Output(0) } -// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler. -type AllCandidateSamplerAttr func(optionalAttr) - -// AllCandidateSamplerSeed sets the optional seed attribute to value. -// -// value: If either seed or seed2 are set to be non-zero, the random number -// generator is seeded by the given seed. Otherwise, it is seeded by a -// random seed. -// If not specified, defaults to 0 -func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed"] = value - } -} - -// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value. -// -// value: An second seed to avoid seed collision. -// If not specified, defaults to 0 -func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr { - return func(m optionalAttr) { - m["seed2"] = value - } -} - -// Generates labels for candidate sampling with a learned unigram distribution. -// -// See explanations of candidate sampling and the data formats at -// go/candidate-sampling. -// -// For each batch, this op picks a single set of sampled candidate labels. -// -// The advantages of sampling candidates per-batch are simplicity and the -// possibility of efficient dense matrix multiplication. The disadvantage is that -// the sampled candidates must be chosen independently of the context and of the -// true labels. -// -// Arguments: -// true_classes: A batch_size * num_true matrix, in which each row contains the -// IDs of the num_true target_classes in the corresponding original label. -// num_true: Number of true labels per context. -// num_sampled: Number of candidates to produce. -// unique: If unique is true, we sample with rejection, so that all sampled -// candidates in a batch are unique. This requires some approximation to -// estimate the post-rejection sampling probabilities. -// -// Returns A vector of length num_sampled, in which each element is -// the ID of a sampled candidate.A batch_size * num_true matrix, representing -// the number of times each candidate is expected to occur in a batch -// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled -// candidate representing the number of times the candidate is expected -// to occur in a batch of sampled candidates. If unique=true, then this is a -// probability. -func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { - if scope.Err() != nil { - return - } - attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique} - for _, a := range optional { - a(attrs) - } - opspec := tf.OpSpec{ - Type: "AllCandidateSampler", - Input: []tf.Input{ - true_classes, - }, - Attrs: attrs, - } - op := scope.AddOperation(opspec) - return op.Output(0), op.Output(1), op.Output(2) -} - // FixedUnigramCandidateSamplerAttr is an optional argument to FixedUnigramCandidateSampler. type FixedUnigramCandidateSamplerAttr func(optionalAttr) @@ -7004,6 +6932,194 @@ func ExtractJpegShape(scope *Scope, contents tf.Output, optional ...ExtractJpegS return op.Output(0) } +// AllCandidateSamplerAttr is an optional argument to AllCandidateSampler. +type AllCandidateSamplerAttr func(optionalAttr) + +// AllCandidateSamplerSeed sets the optional seed attribute to value. +// +// value: If either seed or seed2 are set to be non-zero, the random number +// generator is seeded by the given seed. Otherwise, it is seeded by a +// random seed. +// If not specified, defaults to 0 +func AllCandidateSamplerSeed(value int64) AllCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed"] = value + } +} + +// AllCandidateSamplerSeed2 sets the optional seed2 attribute to value. +// +// value: An second seed to avoid seed collision. +// If not specified, defaults to 0 +func AllCandidateSamplerSeed2(value int64) AllCandidateSamplerAttr { + return func(m optionalAttr) { + m["seed2"] = value + } +} + +// Generates labels for candidate sampling with a learned unigram distribution. +// +// See explanations of candidate sampling and the data formats at +// go/candidate-sampling. +// +// For each batch, this op picks a single set of sampled candidate labels. +// +// The advantages of sampling candidates per-batch are simplicity and the +// possibility of efficient dense matrix multiplication. The disadvantage is that +// the sampled candidates must be chosen independently of the context and of the +// true labels. +// +// Arguments: +// true_classes: A batch_size * num_true matrix, in which each row contains the +// IDs of the num_true target_classes in the corresponding original label. +// num_true: Number of true labels per context. +// num_sampled: Number of candidates to produce. +// unique: If unique is true, we sample with rejection, so that all sampled +// candidates in a batch are unique. This requires some approximation to +// estimate the post-rejection sampling probabilities. +// +// Returns A vector of length num_sampled, in which each element is +// the ID of a sampled candidate.A batch_size * num_true matrix, representing +// the number of times each candidate is expected to occur in a batch +// of sampled candidates. If unique=true, then this is a probability.A vector of length num_sampled, for each sampled +// candidate representing the number of times the candidate is expected +// to occur in a batch of sampled candidates. If unique=true, then this is a +// probability. +func AllCandidateSampler(scope *Scope, true_classes tf.Output, num_true int64, num_sampled int64, unique bool, optional ...AllCandidateSamplerAttr) (sampled_candidates tf.Output, true_expected_count tf.Output, sampled_expected_count tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{"num_true": num_true, "num_sampled": num_sampled, "unique": unique} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "AllCandidateSampler", + Input: []tf.Input{ + true_classes, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0), op.Output(1), op.Output(2) +} + +// DecodeAndCropJpegAttr is an optional argument to DecodeAndCropJpeg. +type DecodeAndCropJpegAttr func(optionalAttr) + +// DecodeAndCropJpegChannels sets the optional channels attribute to value. +// +// value: Number of color channels for the decoded image. +// If not specified, defaults to 0 +func DecodeAndCropJpegChannels(value int64) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["channels"] = value + } +} + +// DecodeAndCropJpegRatio sets the optional ratio attribute to value. +// +// value: Downscaling ratio. +// If not specified, defaults to 1 +func DecodeAndCropJpegRatio(value int64) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["ratio"] = value + } +} + +// DecodeAndCropJpegFancyUpscaling sets the optional fancy_upscaling attribute to value. +// +// value: If true use a slower but nicer upscaling of the +// chroma planes (yuv420/422 only). +// If not specified, defaults to true +func DecodeAndCropJpegFancyUpscaling(value bool) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["fancy_upscaling"] = value + } +} + +// DecodeAndCropJpegTryRecoverTruncated sets the optional try_recover_truncated attribute to value. +// +// value: If true try to recover an image from truncated input. +// If not specified, defaults to false +func DecodeAndCropJpegTryRecoverTruncated(value bool) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["try_recover_truncated"] = value + } +} + +// DecodeAndCropJpegAcceptableFraction sets the optional acceptable_fraction attribute to value. +// +// value: The minimum required fraction of lines before a truncated +// input is accepted. +// If not specified, defaults to 1 +func DecodeAndCropJpegAcceptableFraction(value float32) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["acceptable_fraction"] = value + } +} + +// DecodeAndCropJpegDctMethod sets the optional dct_method attribute to value. +// +// value: string specifying a hint about the algorithm used for +// decompression. Defaults to "" which maps to a system-specific +// default. Currently valid values are ["INTEGER_FAST", +// "INTEGER_ACCURATE"]. The hint may be ignored (e.g., the internal +// jpeg library changes to a version that does not have that specific +// option.) +// If not specified, defaults to "" +func DecodeAndCropJpegDctMethod(value string) DecodeAndCropJpegAttr { + return func(m optionalAttr) { + m["dct_method"] = value + } +} + +// Decode and Crop a JPEG-encoded image to a uint8 tensor. +// +// The attr `channels` indicates the desired number of color channels for the +// decoded image. +// +// Accepted values are: +// +// * 0: Use the number of channels in the JPEG-encoded image. +// * 1: output a grayscale image. +// * 3: output an RGB image. +// +// If needed, the JPEG-encoded image is transformed to match the requested number +// of color channels. +// +// The attr `ratio` allows downscaling the image by an integer factor during +// decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than +// downscaling the image later. +// +// +// It is equivalent to a combination of decode and crop, but much faster by only +// decoding partial jpeg image. +// +// Arguments: +// contents: 0-D. The JPEG-encoded image. +// crop_window: 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width]. +// +// Returns 3-D with shape `[height, width, channels]`.. +func DecodeAndCropJpeg(scope *Scope, contents tf.Output, crop_window tf.Output, optional ...DecodeAndCropJpegAttr) (image tf.Output) { + if scope.Err() != nil { + return + } + attrs := map[string]interface{}{} + for _, a := range optional { + a(attrs) + } + opspec := tf.OpSpec{ + Type: "DecodeAndCropJpeg", + Input: []tf.Input{ + contents, crop_window, + }, + Attrs: attrs, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // DecodeJpegAttr is an optional argument to DecodeJpeg. type DecodeJpegAttr func(optionalAttr) @@ -7092,6 +7208,7 @@ func DecodeJpegDctMethod(value string) DecodeJpegAttr { // decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than // downscaling the image later. // +// // This op also supports decoding PNGs and non-animated GIFs since the interface is // the same, though it is cleaner to use `tf.image.decode_image`. //