Add v1 to the names of Keras files that are legacy-training-loop-specific.
				
					
				
			PiperOrigin-RevId: 331851473 Change-Id: I18dfafc0e30627bb328ce945d822d8be80672e3e
This commit is contained in:
		
							parent
							
								
									67548eff59
								
							
						
					
					
						commit
						e8384561f1
					
				@ -33,10 +33,10 @@ py_library(
 | 
				
			|||||||
        "saving.py",
 | 
					        "saving.py",
 | 
				
			||||||
        "sequential.py",
 | 
					        "sequential.py",
 | 
				
			||||||
        "training.py",
 | 
					        "training.py",
 | 
				
			||||||
        "training_arrays.py",
 | 
					        "training_arrays_v1.py",
 | 
				
			||||||
        "training_distributed.py",
 | 
					        "training_distributed_v1.py",
 | 
				
			||||||
        "training_eager.py",
 | 
					        "training_eager_v1.py",
 | 
				
			||||||
        "training_generator.py",
 | 
					        "training_generator_v1.py",
 | 
				
			||||||
        "training_utils.py",
 | 
					        "training_utils.py",
 | 
				
			||||||
        "training_v1.py",
 | 
					        "training_v1.py",
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
 | 
				
			|||||||
@ -31,7 +31,7 @@ from tensorflow.python.framework import errors
 | 
				
			|||||||
from tensorflow.python.framework import ops
 | 
					from tensorflow.python.framework import ops
 | 
				
			||||||
from tensorflow.python.framework import sparse_tensor
 | 
					from tensorflow.python.framework import sparse_tensor
 | 
				
			||||||
from tensorflow.python.keras import backend as K
 | 
					from tensorflow.python.keras import backend as K
 | 
				
			||||||
from tensorflow.python.keras.engine import training_generator
 | 
					from tensorflow.python.keras.engine import training_generator_v1
 | 
				
			||||||
from tensorflow.python.keras.engine.base_layer import Layer
 | 
					from tensorflow.python.keras.engine.base_layer import Layer
 | 
				
			||||||
from tensorflow.python.keras.utils import tf_utils
 | 
					from tensorflow.python.keras.utils import tf_utils
 | 
				
			||||||
from tensorflow.python.ops import sparse_ops
 | 
					from tensorflow.python.ops import sparse_ops
 | 
				
			||||||
@ -175,7 +175,7 @@ class CombinerPreprocessingLayer(PreprocessingLayer):
 | 
				
			|||||||
      next_data = self._get_dataset_iterator(
 | 
					      next_data = self._get_dataset_iterator(
 | 
				
			||||||
          dataset_ops.Dataset.from_tensor_slices(data).batch(512))
 | 
					          dataset_ops.Dataset.from_tensor_slices(data).batch(512))
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
      generator, _ = training_generator.convert_to_generator_like(
 | 
					      generator, _ = training_generator_v1.convert_to_generator_like(
 | 
				
			||||||
          data, batch_size=512)
 | 
					          data, batch_size=512)
 | 
				
			||||||
      # If the data is not a dataset, we can iterate over it using next(foo);
 | 
					      # If the data is not a dataset, we can iterate over it using next(foo);
 | 
				
			||||||
      # here, we wrap that into a callable.
 | 
					      # here, we wrap that into a callable.
 | 
				
			||||||
 | 
				
			|||||||
@ -33,7 +33,7 @@ from tensorflow.python.keras import backend as K
 | 
				
			|||||||
from tensorflow.python.keras import callbacks as cbks
 | 
					from tensorflow.python.keras import callbacks as cbks
 | 
				
			||||||
from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
 | 
					from tensorflow.python.keras.distribute import distributed_training_utils as dist_utils
 | 
				
			||||||
from tensorflow.python.keras.engine import partial_batch_padding_handler as padding_util
 | 
					from tensorflow.python.keras.engine import partial_batch_padding_handler as padding_util
 | 
				
			||||||
from tensorflow.python.keras.engine import training_arrays
 | 
					from tensorflow.python.keras.engine import training_arrays_v1
 | 
				
			||||||
from tensorflow.python.keras.engine import training_utils
 | 
					from tensorflow.python.keras.engine import training_utils
 | 
				
			||||||
from tensorflow.python.keras.utils.generic_utils import Progbar
 | 
					from tensorflow.python.keras.utils.generic_utils import Progbar
 | 
				
			||||||
from tensorflow.python.keras.utils.mode_keys import ModeKeys
 | 
					from tensorflow.python.keras.utils.mode_keys import ModeKeys
 | 
				
			||||||
@ -669,7 +669,7 @@ class DistributionSingleWorkerTrainingLoop(training_utils.TrainingLoop):
 | 
				
			|||||||
            validation_steps=validation_steps,
 | 
					            validation_steps=validation_steps,
 | 
				
			||||||
            validation_freq=validation_freq)
 | 
					            validation_freq=validation_freq)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return training_arrays.fit_loop(
 | 
					    return training_arrays_v1.fit_loop(
 | 
				
			||||||
        model,
 | 
					        model,
 | 
				
			||||||
        dataset,
 | 
					        dataset,
 | 
				
			||||||
        batch_size=batch_size,
 | 
					        batch_size=batch_size,
 | 
				
			||||||
@ -717,7 +717,7 @@ class DistributionSingleWorkerTrainingLoop(training_utils.TrainingLoop):
 | 
				
			|||||||
        return experimental_tpu_test_loop(
 | 
					        return experimental_tpu_test_loop(
 | 
				
			||||||
            model, dataset, verbose=verbose, steps=steps, callbacks=callbacks)
 | 
					            model, dataset, verbose=verbose, steps=steps, callbacks=callbacks)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return training_arrays.test_loop(
 | 
					    return training_arrays_v1.test_loop(
 | 
				
			||||||
        model,
 | 
					        model,
 | 
				
			||||||
        inputs=dataset,
 | 
					        inputs=dataset,
 | 
				
			||||||
        batch_size=batch_size,
 | 
					        batch_size=batch_size,
 | 
				
			||||||
@ -751,7 +751,7 @@ class DistributionSingleWorkerTrainingLoop(training_utils.TrainingLoop):
 | 
				
			|||||||
      if not context.executing_eagerly():
 | 
					      if not context.executing_eagerly():
 | 
				
			||||||
        return experimental_tpu_predict_loop(
 | 
					        return experimental_tpu_predict_loop(
 | 
				
			||||||
            model, dataset, verbose=verbose, steps=steps, callbacks=callbacks)
 | 
					            model, dataset, verbose=verbose, steps=steps, callbacks=callbacks)
 | 
				
			||||||
    return training_arrays.predict_loop(
 | 
					    return training_arrays_v1.predict_loop(
 | 
				
			||||||
        model,
 | 
					        model,
 | 
				
			||||||
        dataset,
 | 
					        dataset,
 | 
				
			||||||
        batch_size=batch_size,
 | 
					        batch_size=batch_size,
 | 
				
			||||||
@ -34,7 +34,7 @@ from tensorflow.python.keras import metrics as metrics_module
 | 
				
			|||||||
from tensorflow.python.keras import testing_utils
 | 
					from tensorflow.python.keras import testing_utils
 | 
				
			||||||
from tensorflow.python.keras.engine import input_layer
 | 
					from tensorflow.python.keras.engine import input_layer
 | 
				
			||||||
from tensorflow.python.keras.engine import training
 | 
					from tensorflow.python.keras.engine import training
 | 
				
			||||||
from tensorflow.python.keras.engine import training_generator
 | 
					from tensorflow.python.keras.engine import training_generator_v1
 | 
				
			||||||
from tensorflow.python.keras.optimizer_v2 import rmsprop
 | 
					from tensorflow.python.keras.optimizer_v2 import rmsprop
 | 
				
			||||||
from tensorflow.python.keras.utils import data_utils
 | 
					from tensorflow.python.keras.utils import data_utils
 | 
				
			||||||
from tensorflow.python.platform import test
 | 
					from tensorflow.python.platform import test
 | 
				
			||||||
@ -527,7 +527,7 @@ class TestConvertToGeneratorLike(test.TestCase, parameterized.TestCase):
 | 
				
			|||||||
        isinstance(data, (dataset_ops.DatasetV2, iterator_ops.Iterator))):
 | 
					        isinstance(data, (dataset_ops.DatasetV2, iterator_ops.Iterator))):
 | 
				
			||||||
      return
 | 
					      return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    generator, steps = training_generator.convert_to_generator_like(
 | 
					    generator, steps = training_generator_v1.convert_to_generator_like(
 | 
				
			||||||
        data, batch_size=2, steps_per_epoch=expected_batches)
 | 
					        data, batch_size=2, steps_per_epoch=expected_batches)
 | 
				
			||||||
    self.assertEqual(steps, expected_batches)
 | 
					    self.assertEqual(steps, expected_batches)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -45,10 +45,10 @@ from tensorflow.python.keras import optimizers
 | 
				
			|||||||
from tensorflow.python.keras.distribute import distributed_training_utils
 | 
					from tensorflow.python.keras.distribute import distributed_training_utils
 | 
				
			||||||
from tensorflow.python.keras.engine import base_layer
 | 
					from tensorflow.python.keras.engine import base_layer
 | 
				
			||||||
from tensorflow.python.keras.engine import training as training_lib
 | 
					from tensorflow.python.keras.engine import training as training_lib
 | 
				
			||||||
from tensorflow.python.keras.engine import training_arrays
 | 
					from tensorflow.python.keras.engine import training_arrays_v1
 | 
				
			||||||
from tensorflow.python.keras.engine import training_distributed
 | 
					from tensorflow.python.keras.engine import training_distributed_v1
 | 
				
			||||||
from tensorflow.python.keras.engine import training_eager
 | 
					from tensorflow.python.keras.engine import training_eager_v1
 | 
				
			||||||
from tensorflow.python.keras.engine import training_generator
 | 
					from tensorflow.python.keras.engine import training_generator_v1
 | 
				
			||||||
from tensorflow.python.keras.engine import training_utils
 | 
					from tensorflow.python.keras.engine import training_utils
 | 
				
			||||||
from tensorflow.python.keras.mixed_precision.experimental import loss_scale_optimizer
 | 
					from tensorflow.python.keras.mixed_precision.experimental import loss_scale_optimizer
 | 
				
			||||||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
 | 
					from tensorflow.python.keras.optimizer_v2 import optimizer_v2
 | 
				
			||||||
@ -582,25 +582,25 @@ class Model(training_lib.Model):
 | 
				
			|||||||
    # Case 1: distribution strategy.
 | 
					    # Case 1: distribution strategy.
 | 
				
			||||||
    if self._distribution_strategy:
 | 
					    if self._distribution_strategy:
 | 
				
			||||||
      if self._in_multi_worker_mode():
 | 
					      if self._in_multi_worker_mode():
 | 
				
			||||||
        return training_distributed.DistributionMultiWorkerTrainingLoop(
 | 
					        return training_distributed_v1.DistributionMultiWorkerTrainingLoop(
 | 
				
			||||||
            training_distributed.DistributionSingleWorkerTrainingLoop())
 | 
					            training_distributed_v1.DistributionSingleWorkerTrainingLoop())
 | 
				
			||||||
      else:
 | 
					      else:
 | 
				
			||||||
        return training_distributed.DistributionSingleWorkerTrainingLoop()
 | 
					        return training_distributed_v1.DistributionSingleWorkerTrainingLoop()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Case 2: generator-like. Input is Python generator, or Sequence object,
 | 
					    # Case 2: generator-like. Input is Python generator, or Sequence object,
 | 
				
			||||||
    # or a non-distributed Dataset or iterator in eager execution.
 | 
					    # or a non-distributed Dataset or iterator in eager execution.
 | 
				
			||||||
    if data_utils.is_generator_or_sequence(inputs):
 | 
					    if data_utils.is_generator_or_sequence(inputs):
 | 
				
			||||||
      return training_generator.GeneratorOrSequenceTrainingLoop()
 | 
					      return training_generator_v1.GeneratorOrSequenceTrainingLoop()
 | 
				
			||||||
    if training_utils.is_eager_dataset_or_iterator(inputs):
 | 
					    if training_utils.is_eager_dataset_or_iterator(inputs):
 | 
				
			||||||
      return training_generator.EagerDatasetOrIteratorTrainingLoop()
 | 
					      return training_generator_v1.EagerDatasetOrIteratorTrainingLoop()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Case 3: Symbolic tensors or Numpy array-like.
 | 
					    # Case 3: Symbolic tensors or Numpy array-like.
 | 
				
			||||||
    # This includes Datasets and iterators in graph mode (since they
 | 
					    # This includes Datasets and iterators in graph mode (since they
 | 
				
			||||||
    # generate symbolic tensors).
 | 
					    # generate symbolic tensors).
 | 
				
			||||||
    if self.run_eagerly:
 | 
					    if self.run_eagerly:
 | 
				
			||||||
      return training_generator.GeneratorLikeTrainingLoop()
 | 
					      return training_generator_v1.GeneratorLikeTrainingLoop()
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
      return training_arrays.ArrayLikeTrainingLoop()
 | 
					      return training_arrays_v1.ArrayLikeTrainingLoop()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  def fit(self,
 | 
					  def fit(self,
 | 
				
			||||||
          x=None,
 | 
					          x=None,
 | 
				
			||||||
@ -1062,7 +1062,7 @@ class Model(training_lib.Model):
 | 
				
			|||||||
    # for each replica by `self._distribution_strategy` and the same code path
 | 
					    # for each replica by `self._distribution_strategy` and the same code path
 | 
				
			||||||
    # as Eager is expected to be taken.
 | 
					    # as Eager is expected to be taken.
 | 
				
			||||||
    if self.run_eagerly or self._distribution_strategy:
 | 
					    if self.run_eagerly or self._distribution_strategy:
 | 
				
			||||||
      output_dict = training_eager.train_on_batch(
 | 
					      output_dict = training_eager_v1.train_on_batch(
 | 
				
			||||||
          self,
 | 
					          self,
 | 
				
			||||||
          x,
 | 
					          x,
 | 
				
			||||||
          y,
 | 
					          y,
 | 
				
			||||||
@ -1141,7 +1141,7 @@ class Model(training_lib.Model):
 | 
				
			|||||||
    # If `self._distribution_strategy` is True, then we are in a replica context
 | 
					    # If `self._distribution_strategy` is True, then we are in a replica context
 | 
				
			||||||
    # at this point.
 | 
					    # at this point.
 | 
				
			||||||
    if self.run_eagerly or self._distribution_strategy:
 | 
					    if self.run_eagerly or self._distribution_strategy:
 | 
				
			||||||
      output_dict = training_eager.test_on_batch(
 | 
					      output_dict = training_eager_v1.test_on_batch(
 | 
				
			||||||
          self,
 | 
					          self,
 | 
				
			||||||
          x,
 | 
					          x,
 | 
				
			||||||
          y,
 | 
					          y,
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user