Remove tf.keras.utils.HDF5Matrix as its deprecation date is overdue.

PiperOrigin-RevId: 331848144
Change-Id: I72dbb6bf9aef527edf35b6d18278a5c1cf53fcda
This commit is contained in:
Yanhui Liang 2020-09-15 13:58:47 -07:00 committed by TensorFlower Gardener
parent 94b9e540f4
commit 67548eff59
8 changed files with 2 additions and 329 deletions

View File

@ -423,8 +423,8 @@ class TensorLikeDataAdapter(DataAdapter):
class GenericArrayLikeDataAdapter(TensorLikeDataAdapter):
"""Adapter that handles array-like data without forcing it into memory.
As an example, this adapter handles `keras.utils.HDF5Matrix` which holds
datasets that may be too big to fully fit into memory.
This adapter handles array-like datasets that may be too big to fully
fit into memory.
Specifically, this adapter handles any Python class which implements:
`__get_item__`, `__len__`, `shape`, and `dtype` with the same meanings

View File

@ -34,7 +34,6 @@ from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
from tensorflow.python.keras.utils.generic_utils import get_custom_objects
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.keras.utils.io_utils import HDF5Matrix
from tensorflow.python.keras.utils.layer_utils import get_source_inputs
from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model
from tensorflow.python.keras.utils.np_utils import normalize

View File

@ -18,21 +18,10 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
import numpy as np
import six
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import type_spec
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import keras_export
try:
import h5py
except ImportError:
h5py = None
if sys.version_info >= (3, 6):
@ -77,162 +66,6 @@ def path_to_string(path):
return _path_to_string(path)
@keras_export('keras.utils.HDF5Matrix')
class HDF5Matrix(object):
"""Representation of HDF5 dataset to be used instead of a Numpy array.
THIS CLASS IS DEPRECATED.
Training with HDF5Matrix may not be optimized for performance, and might
not work with every distribution strategy.
We recommend using https://github.com/tensorflow/io to load your
HDF5 data into a tf.data Dataset and passing that dataset to Keras.
"""
refs = collections.defaultdict(int)
@deprecation.deprecated('2020-05-30', 'Training with '
'HDF5Matrix is not optimized for performance. '
'Instead, we recommend using '
'https://github.com/tensorflow/io to load your '
'HDF5 data into a tf.data Dataset and passing '
'that dataset to Keras.')
def __init__(self, datapath, dataset, start=0, end=None, normalizer=None):
"""Representation of HDF5 dataset to be used instead of a Numpy array.
Example:
```python
x_data = HDF5Matrix('input/file.hdf5', 'data')
model.predict(x_data)
```
Providing `start` and `end` allows use of a slice of the dataset.
Optionally, a normalizer function (or lambda) can be given. This will
be called on every slice of data retrieved.
Arguments:
datapath: string, path to a HDF5 file
dataset: string, name of the HDF5 dataset in the file specified
in datapath
start: int, start of desired slice of the specified dataset
end: int, end of desired slice of the specified dataset
normalizer: function to be called on data when retrieved
Returns:
An array-like HDF5 dataset.
Raises:
ImportError if HDF5 & h5py are not installed
"""
if h5py is None:
raise ImportError('The use of HDF5Matrix requires '
'HDF5 and h5py installed.')
if datapath not in list(self.refs.keys()):
f = h5py.File(datapath)
self.refs[datapath] = f
else:
f = self.refs[datapath]
self.data = f[dataset]
self.start = start
if end is None:
self.end = self.data.shape[0]
else:
self.end = end
self.normalizer = normalizer
def __len__(self):
return self.end - self.start
def __getitem__(self, key):
if isinstance(key, slice):
start, stop = key.start, key.stop
if start is None:
start = 0
if stop is None:
stop = self.shape[0]
if stop + self.start <= self.end:
idx = slice(start + self.start, stop + self.start)
else:
raise IndexError
elif isinstance(key, (int, np.integer)):
if key + self.start < self.end:
idx = key + self.start
else:
raise IndexError
elif isinstance(key, np.ndarray):
if np.max(key) + self.start < self.end:
idx = (self.start + key).tolist()
else:
raise IndexError
else:
# Assume list/iterable
if max(key) + self.start < self.end:
idx = [x + self.start for x in key]
else:
raise IndexError
if self.normalizer is not None:
return self.normalizer(self.data[idx])
else:
return self.data[idx]
@property
def shape(self):
"""Gets a numpy-style shape tuple giving the dataset dimensions.
Returns:
A numpy-style shape tuple.
"""
return (self.end - self.start,) + self.data.shape[1:]
@property
def dtype(self):
"""Gets the datatype of the dataset.
Returns:
A numpy dtype string.
"""
return self.data.dtype
@property
def ndim(self):
"""Gets the number of dimensions (rank) of the dataset.
Returns:
An integer denoting the number of dimensions (rank) of the dataset.
"""
return self.data.ndim
@property
def size(self):
"""Gets the total dataset size (number of elements).
Returns:
An integer denoting the number of elements in the dataset.
"""
return np.prod(self.shape)
@staticmethod
def _to_type_spec(value):
"""Gets the Tensorflow TypeSpec corresponding to the passed dataset.
Args:
value: A HDF5Matrix object.
Returns:
A tf.TensorSpec.
"""
if not isinstance(value, HDF5Matrix):
raise TypeError('Expected value to be a HDF5Matrix, but saw: {}'.format(
type(value)))
return tensor_spec.TensorSpec(shape=value.shape, dtype=value.dtype)
type_spec.register_type_spec_from_value_converter(HDF5Matrix,
HDF5Matrix._to_type_spec) # pylint: disable=protected-access
def ask_to_proceed_with_overwrite(filepath):
"""Produces a prompt asking about overwriting a file.

View File

@ -18,110 +18,17 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
import sys
import numpy as np
import six
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.utils import io_utils
from tensorflow.python.platform import test
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
def create_dataset(h5_path='test.h5'):
x = np.random.randn(200, 10).astype('float32')
y = np.random.randint(0, 2, size=(200, 1))
f = h5py.File(h5_path, 'w')
# Creating dataset to store features
x_dset = f.create_dataset('my_data', (200, 10), dtype='f')
x_dset[:] = x
# Creating dataset to store labels
y_dset = f.create_dataset('my_labels', (200, 1), dtype='i')
y_dset[:] = y
f.close()
class TestIOUtils(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_HDF5Matrix(self):
if h5py is None:
return
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir)
h5_path = os.path.join(temp_dir, 'test.h5')
create_dataset(h5_path)
# Instantiating HDF5Matrix for the training set,
# which is a slice of the first 150 elements
x_train = io_utils.HDF5Matrix(h5_path, 'my_data', start=0, end=150)
y_train = io_utils.HDF5Matrix(h5_path, 'my_labels', start=0, end=150)
# Likewise for the test set
x_test = io_utils.HDF5Matrix(h5_path, 'my_data', start=150, end=200)
y_test = io_utils.HDF5Matrix(h5_path, 'my_labels', start=150, end=200)
# HDF5Matrix behave more or less like Numpy matrices
# with regard to indexing
self.assertEqual(y_train.shape, (150, 1))
# But they do not support negative indices, so don't try print(x_train[-1])
self.assertEqual(y_train.dtype, np.dtype('i'))
self.assertEqual(y_train.ndim, 2)
self.assertEqual(y_train.size, 150)
model = keras.models.Sequential()
model.add(keras.layers.Dense(64, input_shape=(10,), activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
model.compile(
loss='binary_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
# Note: you have to use shuffle='batch' or False with HDF5Matrix
model.fit(x_train, y_train, batch_size=32, shuffle='batch', verbose=False)
# test that evaluation and prediction
# don't crash and return reasonable results
out_pred = model.predict(x_test, batch_size=32, verbose=False)
out_eval = model.evaluate(x_test, y_test, batch_size=32, verbose=False)
self.assertEqual(out_pred.shape, (50, 1))
self.assertGreater(out_eval, 0)
# test slicing for shortened array
self.assertEqual(len(x_train[0:]), len(x_train))
# test __getitem__ invalid use cases
with self.assertRaises(IndexError):
_ = x_train[1000]
with self.assertRaises(IndexError):
_ = x_train[1000: 1001]
with self.assertRaises(IndexError):
_ = x_train[[1000, 1001]]
with self.assertRaises(IndexError):
_ = x_train[six.moves.range(1000, 1001)]
with self.assertRaises(IndexError):
_ = x_train[np.array([1000])]
with self.assertRaises(TypeError):
_ = x_train[None]
# test normalizer
normalizer = lambda x: x + 1
normalized_x_train = io_utils.HDF5Matrix(
h5_path, 'my_data', start=0, end=150, normalizer=normalizer)
self.assertAllClose(normalized_x_train[0][0], x_train[0][0] + 1)
def test_ask_to_proceed_with_overwrite(self):
with test.mock.patch.object(six.moves, 'input') as mock_log:
mock_log.return_value = 'y'

View File

@ -1,29 +0,0 @@
path: "tensorflow.keras.utils.HDF5Matrix"
tf_class {
is_instance: "<class \'tensorflow.python.keras.utils.io_utils.HDF5Matrix\'>"
is_instance: "<type \'object\'>"
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "ndim"
mtype: "<type \'property\'>"
}
member {
name: "refs"
mtype: "<type \'collections.defaultdict\'>"
}
member {
name: "shape"
mtype: "<type \'property\'>"
}
member {
name: "size"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'datapath\', \'dataset\', \'start\', \'end\', \'normalizer\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], "
}
}

View File

@ -8,10 +8,6 @@ tf_module {
name: "GeneratorEnqueuer"
mtype: "<type \'type\'>"
}
member {
name: "HDF5Matrix"
mtype: "<type \'type\'>"
}
member {
name: "OrderedEnqueuer"
mtype: "<type \'type\'>"

View File

@ -1,29 +0,0 @@
path: "tensorflow.keras.utils.HDF5Matrix"
tf_class {
is_instance: "<class \'tensorflow.python.keras.utils.io_utils.HDF5Matrix\'>"
is_instance: "<type \'object\'>"
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "ndim"
mtype: "<type \'property\'>"
}
member {
name: "refs"
mtype: "<type \'collections.defaultdict\'>"
}
member {
name: "shape"
mtype: "<type \'property\'>"
}
member {
name: "size"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'datapath\', \'dataset\', \'start\', \'end\', \'normalizer\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], "
}
}

View File

@ -8,10 +8,6 @@ tf_module {
name: "GeneratorEnqueuer"
mtype: "<type \'type\'>"
}
member {
name: "HDF5Matrix"
mtype: "<type \'type\'>"
}
member {
name: "OrderedEnqueuer"
mtype: "<type \'type\'>"