Merge changes from github followup.

PiperOrigin-RevId: 160183498
This commit is contained in:
A. Unique TensorFlower 2017-06-26 13:05:22 -07:00 committed by TensorFlower Gardener
parent 0a6d5cda49
commit b91b5baab2
9 changed files with 27 additions and 316 deletions

View File

@ -208,6 +208,7 @@ filegroup(
"//tensorflow/compiler/jit/kernels:all_files",
"//tensorflow/compiler/jit/legacy_flags:all_files",
"//tensorflow/compiler/jit/ops:all_files",
"//tensorflow/compiler/plugin/executor:all_files",
"//tensorflow/compiler/tests:all_files",
"//tensorflow/compiler/tf2xla:all_files",
"//tensorflow/compiler/tf2xla/cc:all_files",

View File

@ -15,7 +15,10 @@ package_group(
)
package(
default_visibility = [":internal"],
default_visibility = [
":internal",
"//tensorflow/compiler/plugin/executor:__pkg__",
],
)
load("//tensorflow:tensorflow.bzl", "cc_header_only_library")

View File

@ -2,6 +2,7 @@ licenses(["notice"]) # Apache 2.0
package(
default_visibility = [
"//tensorflow/compiler/plugin/executor:__pkg__",
"//tensorflow/compiler/tf2xla:internal",
],
)

View File

@ -11,9 +11,11 @@ cc_library(
"*.h",
]),
deps = [
"//tensorflow/compiler/jit:xla_device",
"//tensorflow/compiler/jit:xla_jit_headers_lib",
"//tensorflow/compiler/tf2xla:xla_compiler",
"//tensorflow/compiler/xla:xla_headers_lib",
"//tensorflow/compiler/xla/service:hlo_evaluator",
"//tensorflow/compiler/xla/service",
"//third_party/eigen3",
"@local_config_cuda//cuda:cuda_headers",
"@protobuf//:protobuf_headers",

View File

@ -175,6 +175,11 @@ tf_xla_py_test(
name = "slice_ops_test",
size = "small",
srcs = ["slice_ops_test.py"],
# TODO(b/62962492): Test fails with assertion error.
tags = [
"manual",
"notap",
],
deps = [
":xla_test",
"//tensorflow/python:array_ops",
@ -456,6 +461,11 @@ cuda_py_test(
"//tensorflow/python:math_ops",
"//tensorflow/python:nn_ops",
],
# TODO(b/62961789): Test fails with SIGABRT
tags = [
"manual",
"notap",
],
)
cc_library(
@ -524,8 +534,12 @@ cuda_py_test(
# --dump_graph_dir, and the config file was written by hand.
#
# Run the following to build a minimal benchmark of the computation on Android:
# $ bazel build -c opt --config=android_arm \
# third_party/tensorflow/compiler/tests:lstm_layer_inference_benchmark
# $ bazel build -c opt --cxxopt='-std=c++11' --linkopt='-lm' \
# --cpu=armeabi-v7a \
# --host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
# --crosstool_top=//external:android/crosstool \
# //tensorflow/compiler/tests:lstm_layer_inference_benchmark
#
# Currently the resulting binary size is ~190KB
tf_library(

View File

@ -260,11 +260,7 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None):
For example:
```python
<<<<<<< HEAD
mapping_string = tf.constant(["emerson", "lake", "palmer"])
=======
mapping_string = tf.constant(["emerson", "lake", "palmer")
>>>>>>> 338a7ead4475d6b97b420d6d1c56ff66815e3e7b
indices = tf.constant([1, 5], tf.int64)
values = tf.contrib.lookup.index_to_string(
indices, mapping=mapping_string, default_value="UNKNOWN")

View File

@ -1,305 +0,0 @@
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/sparse_ops.cc.
#define EIGEN_USE_THREADS
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/util/sparse/sparse_tensor.h"
// TODO(b/31496047): Fix non-standard include order.
#include <numeric> // clang-format off
using tensorflow::sparse::SparseTensor;
using tensorflow::gtl::ArraySlice;
namespace tensorflow {
struct ReduceDetails {
// The dimensions to call Reorder() with.
std::vector<int64> reorder_dims;
// The dimensions to call group() with after Reorder().
std::vector<int64> group_by_dims;
// The shape after reduction.
TensorShape reduced_shape;
};
// Compute common reduce parameters that'll be used for SparseTensor
// reductions. Usage:
// ReduceDetails reduction = SparseTensorReduceHelper(sp, axes, keep_dims);
// sp.Reorder(reduction.reorder_dims);
// for (const auto& g : sp.group(reduction.group_by_dims)) {
// ...
// }
// // Set output shape to reduction.reduced_shape.
ReduceDetails SparseTensorReduceHelper(const SparseTensor &sp,
gtl::ArraySlice<int32> axes_slice,
bool keep_dims) {
ReduceDetails reduction;
std::vector<int32> reduction_axes(axes_slice.begin(), axes_slice.end());
int ndims = sp.dims();
for (int64 i = 0; i < reduction_axes.size(); ++i) {
reduction_axes[i] = (reduction_axes[i] + ndims) % ndims;
}
std::sort(reduction_axes.begin(), reduction_axes.end());
// (0) Calculate the grouping dimensions:
// group_by_dims == {0, .., NDIMS-1} \ reduction_axes.
std::vector<int64> perm(ndims);
std::iota(perm.begin(), perm.end(), 0);
// Requires perm and reduction_axes_ be sorted; group_by_dims will be
// sorted as well.
std::set_difference(
perm.begin(), perm.end(), reduction_axes.begin(), reduction_axes.end(),
std::inserter(reduction.group_by_dims, reduction.group_by_dims.begin()));
// Now append the rest of the axes (the complement of group_by_dims_);
// result is used by Reorder().
reduction.reorder_dims = reduction.group_by_dims;
std::set_difference(perm.begin(), perm.end(), reduction.group_by_dims.begin(),
reduction.group_by_dims.end(),
std::back_inserter(reduction.reorder_dims));
// (1) Calculate the shape after reduction.
auto sp_shape = sp.shape();
std::vector<int64> out_dim_sizes;
if (keep_dims) {
out_dim_sizes.reserve(ndims);
auto beg = reduction.group_by_dims.begin();
auto end = reduction.group_by_dims.end();
for (int d = 0; d < ndims; ++d) {
if (std::find(beg, end, d) == end) {
out_dim_sizes.push_back(1); // A reduced axis.
} else {
out_dim_sizes.push_back(sp_shape[d]);
}
}
} else {
out_dim_sizes = sp.PickDims(reduction.group_by_dims);
}
reduction.reduced_shape = TensorShape(out_dim_sizes);
return reduction;
}
Status ValidateInputs(const Tensor *shape_t, const Tensor *reduction_axes_t) {
// indices and values are validated in SparseTensor ctor.
if (!TensorShapeUtils::IsVector(shape_t->shape())) {
return errors::InvalidArgument(
"Expected input_shape to be a vector; got shape: ",
shape_t->shape().DebugString());
}
if (!TensorShapeUtils::IsScalar(reduction_axes_t->shape()) &&
!TensorShapeUtils::IsVector(reduction_axes_t->shape())) {
return errors::InvalidArgument(
"Expected reduction_axes to be a scalar or a vector; got shape: ",
reduction_axes_t->shape().DebugString());
}
const auto reduction_axes_flat = reduction_axes_t->flat<int32>();
for (int64 i = 0; i < reduction_axes_flat.size(); i++) {
int32 axis = reduction_axes_flat(i);
if (axis < -shape_t->NumElements() || axis >= shape_t->NumElements()) {
return errors::InvalidArgument("Invalid reduction dimension ", axis,
", for input with ",
shape_t->NumElements(), " dimensions.");
}
}
return Status::OK();
}
template <typename T>
class SparseReduceSumOp : public OpKernel {
public:
explicit SparseReduceSumOp(OpKernelConstruction *ctx) : OpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("keep_dims", &keep_dims_));
}
void Compute(OpKernelContext *ctx) override {
const Tensor *indices_t, *values_t, *shape_t, *reduction_axes_t;
OP_REQUIRES_OK(ctx, ctx->input("input_indices", &indices_t));
OP_REQUIRES_OK(ctx, ctx->input("input_values", &values_t));
OP_REQUIRES_OK(ctx, ctx->input("input_shape", &shape_t));
OP_REQUIRES_OK(ctx, ctx->input("reduction_axes", &reduction_axes_t));
OP_REQUIRES_OK(ctx, ValidateInputs(shape_t, reduction_axes_t));
// TODO(zongheng): we will call Reorder() below, which will modify
// in-place the underlying indices and values buffers. To avoid
// surprises of this kernel being stateful, we work around the above by
// making deep copies here. Remove this if/when we change Reorder()'s
// semantics.
const auto shape_vec = shape_t->vec<int64>();
SparseTensor sp(tensor::DeepCopy(*indices_t), tensor::DeepCopy(*values_t),
TensorShape(shape_vec));
ReduceDetails reduction = SparseTensorReduceHelper(
sp, reduction_axes_t->flat<int32>(), keep_dims_);
Tensor *out_values;
OP_REQUIRES_OK(
ctx, ctx->allocate_output(0, reduction.reduced_shape, &out_values));
auto out_flat = out_values->flat<T>();
out_flat.setZero();
Tensor tmp_group_sum;
OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
TensorShape({}), &tmp_group_sum));
auto group_sum = tmp_group_sum.scalar<T>();
// Compute strides, and use it to convert coords to flat index. The
// coordinates returned by .group() have the same ndims as group_by_dims.
gtl::InlinedVector<int64, 8> output_strides(reduction.group_by_dims.size());
if (!output_strides.empty()) { // Do this iff we don't reduce all.
output_strides.back() = 1;
for (int d = output_strides.size() - 2; d >= 0; --d) {
output_strides[d] =
output_strides[d + 1] * shape_vec(reduction.group_by_dims[d + 1]);
}
}
auto CoordinatesToFlatIndex = [](ArraySlice<int64> coords,
ArraySlice<int64> strides) {
if (strides.empty()) { // Reduce all.
return 0LL;
}
CHECK_EQ(coords.size(), strides.size());
int64 idx = 0;
for (int i = 0; i < coords.size(); ++i) {
idx += coords[i] * strides[i];
}
return idx;
};
// Each group maps one-on-one onto a value in the reduced tensor.
// g.group() provides the coordinates of a particular reduced value.
sp.Reorder<T>(reduction.reorder_dims);
for (const auto &g : sp.group(reduction.group_by_dims)) {
group_sum.device(ctx->eigen_cpu_device()) = g.template values<T>().sum();
const int64 idx = CoordinatesToFlatIndex(g.group(), output_strides);
out_flat(idx) = group_sum();
VLOG(2) << "coords: " << str_util::Join(g.group(), ",")
<< "; idx: " << idx << "; group sum: " << group_sum();
}
}
private:
// True if the number of dimensions should be maintained.
bool keep_dims_;
};
#define REGISTER_KERNELS(T) \
REGISTER_KERNEL_BUILDER( \
Name("SparseReduceSum").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
SparseReduceSumOp<T>)
TF_CALL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS
template <typename T>
class SparseReduceSumSparseOp : public OpKernel {
public:
explicit SparseReduceSumSparseOp(OpKernelConstruction *ctx) : OpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("keep_dims", &keep_dims_));
}
void Compute(OpKernelContext *ctx) override {
const Tensor *indices_t, *values_t, *shape_t, *reduction_axes_t;
OP_REQUIRES_OK(ctx, ctx->input("input_indices", &indices_t));
OP_REQUIRES_OK(ctx, ctx->input("input_values", &values_t));
OP_REQUIRES_OK(ctx, ctx->input("input_shape", &shape_t));
OP_REQUIRES_OK(ctx, ctx->input("reduction_axes", &reduction_axes_t));
OP_REQUIRES_OK(ctx, ValidateInputs(shape_t, reduction_axes_t));
SparseTensor sp(tensor::DeepCopy(*indices_t), tensor::DeepCopy(*values_t),
TensorShape(shape_t->vec<int64>()));
ReduceDetails reduction = SparseTensorReduceHelper(
sp, reduction_axes_t->flat<int32>(), keep_dims_);
sp.Reorder<T>(reduction.reorder_dims);
// Count nnzs in the output SparseTensor.
int64 nnz = 0;
auto iter = sp.group(reduction.group_by_dims);
for (auto it = iter.begin(); it != iter.end(); ++it) {
nnz++;
}
Tensor *out_indices_t;
OP_REQUIRES_OK(ctx,
ctx->allocate_output(
0, TensorShape({nnz, reduction.reduced_shape.dims()}),
&out_indices_t));
typename TTypes<int64>::Matrix out_indices_mat =
out_indices_t->matrix<int64>();
// For keep_dims. We don't explicitly set dim fields for reduced dims below.
out_indices_mat.setZero();
Tensor *out_values_t;
OP_REQUIRES_OK(ctx,
ctx->allocate_output(1, TensorShape({nnz}), &out_values_t));
auto out_flat = out_values_t->flat<T>();
Tensor tmp_group_sum;
OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value,
TensorShape({}), &tmp_group_sum));
auto group_sum = tmp_group_sum.scalar<T>();
int64 i = 0;
for (const auto &g : sp.group(reduction.group_by_dims)) {
group_sum.device(ctx->eigen_cpu_device()) = g.template values<T>().sum();
std::vector<int64> group = g.group();
for (int64 j = 0; j < group.size(); j++) {
if (keep_dims_) {
out_indices_mat(i, reduction.group_by_dims[j]) = group[j];
} else {
out_indices_mat(i, j) = group[j];
}
}
out_flat(i) = group_sum();
i++;
VLOG(2) << "coords: " << str_util::Join(g.group(), ",")
<< "; group sum: " << group_sum();
}
Tensor *out_shape_t;
OP_REQUIRES_OK(ctx, ctx->allocate_output(
2, TensorShape({reduction.reduced_shape.dims()}),
&out_shape_t));
auto out_shape_flat = out_shape_t->flat<int64>();
auto out_dim_sizes = reduction.reduced_shape.dim_sizes();
std::copy(out_dim_sizes.begin(), out_dim_sizes.end(), &out_shape_flat(0));
}
private:
// True if the number of dimensions should be maintained.
bool keep_dims_;
};
#define REGISTER_KERNELS(T) \
REGISTER_KERNEL_BUILDER( \
Name("SparseReduceSumSparse").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
SparseReduceSumSparseOp<T>)
TF_CALL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS
} // namespace tensorflow

View File

@ -3056,6 +3056,7 @@ py_test(
srcs = ["client/session_clusterspec_prop_test.py"],
srcs_version = "PY2AND3",
tags = [
"no_gpu",
"no_pip_gpu",
],
deps = [
@ -3080,6 +3081,7 @@ py_test(
srcs = ["client/session_list_devices_test.py"],
srcs_version = "PY2AND3",
tags = [
"no_gpu",
"no_pip_gpu",
],
deps = [

View File

@ -19,7 +19,6 @@ from __future__ import division
from __future__ import print_function
import numpy as np
import unittest
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
@ -606,7 +605,6 @@ class SparseReduceTest(test_util.TensorFlowTestCase):
self._compare(sp_t, reduction_axes, ndims, True, False)
self._compare(sp_t, reduction_axes, ndims, True, True)
@unittest.skipIf(np.__version__ == "1.13.0", "numpy 1.13 bug")
def testSimpleAndRandomInputs(self):
if np.__version__ == "1.13.0":
self.skipTest("numpy 1.13.0 bug")
@ -646,7 +644,6 @@ class SparseReduceTest(test_util.TensorFlowTestCase):
with self.assertRaisesOpError("Invalid reduction dimension 2"):
sparse_ops.sparse_reduce_max(sp_t, 2).eval()
@unittest.skipIf(np.__version__ == "1.13.0", "numpy 1.13 bug")
def testGradient(self):
if np.__version__ == "1.13.0":
self.skipTest("numpy 1.13.0 bug")