From b91b5baab23cfb8d9da269166070511c28eeaf84 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Mon, 26 Jun 2017 13:05:22 -0700 Subject: [PATCH] Merge changes from github followup. PiperOrigin-RevId: 160183498 --- tensorflow/BUILD | 1 + tensorflow/compiler/jit/BUILD | 5 +- tensorflow/compiler/jit/kernels/BUILD | 1 + tensorflow/compiler/plugin/executor/BUILD | 4 +- tensorflow/compiler/tests/BUILD | 18 +- tensorflow/contrib/lookup/lookup_ops.py | 4 - .../core/kernels/sparse_reduce_sum_op.cc | 305 ------------------ tensorflow/python/BUILD | 2 + .../python/kernel_tests/sparse_ops_test.py | 3 - 9 files changed, 27 insertions(+), 316 deletions(-) delete mode 100644 tensorflow/core/kernels/sparse_reduce_sum_op.cc diff --git a/tensorflow/BUILD b/tensorflow/BUILD index 62ae5ae78c6..6e76db02de0 100644 --- a/tensorflow/BUILD +++ b/tensorflow/BUILD @@ -208,6 +208,7 @@ filegroup( "//tensorflow/compiler/jit/kernels:all_files", "//tensorflow/compiler/jit/legacy_flags:all_files", "//tensorflow/compiler/jit/ops:all_files", + "//tensorflow/compiler/plugin/executor:all_files", "//tensorflow/compiler/tests:all_files", "//tensorflow/compiler/tf2xla:all_files", "//tensorflow/compiler/tf2xla/cc:all_files", diff --git a/tensorflow/compiler/jit/BUILD b/tensorflow/compiler/jit/BUILD index 306e704415b..7ebd8422181 100644 --- a/tensorflow/compiler/jit/BUILD +++ b/tensorflow/compiler/jit/BUILD @@ -15,7 +15,10 @@ package_group( ) package( - default_visibility = [":internal"], + default_visibility = [ + ":internal", + "//tensorflow/compiler/plugin/executor:__pkg__", + ], ) load("//tensorflow:tensorflow.bzl", "cc_header_only_library") diff --git a/tensorflow/compiler/jit/kernels/BUILD b/tensorflow/compiler/jit/kernels/BUILD index ed204b81821..97f3512a6c4 100644 --- a/tensorflow/compiler/jit/kernels/BUILD +++ b/tensorflow/compiler/jit/kernels/BUILD @@ -2,6 +2,7 @@ licenses(["notice"]) # Apache 2.0 package( default_visibility = [ + "//tensorflow/compiler/plugin/executor:__pkg__", "//tensorflow/compiler/tf2xla:internal", ], ) diff --git a/tensorflow/compiler/plugin/executor/BUILD b/tensorflow/compiler/plugin/executor/BUILD index 9bc706abdf6..2e5875705f2 100644 --- a/tensorflow/compiler/plugin/executor/BUILD +++ b/tensorflow/compiler/plugin/executor/BUILD @@ -11,9 +11,11 @@ cc_library( "*.h", ]), deps = [ + "//tensorflow/compiler/jit:xla_device", "//tensorflow/compiler/jit:xla_jit_headers_lib", + "//tensorflow/compiler/tf2xla:xla_compiler", "//tensorflow/compiler/xla:xla_headers_lib", - "//tensorflow/compiler/xla/service:hlo_evaluator", + "//tensorflow/compiler/xla/service", "//third_party/eigen3", "@local_config_cuda//cuda:cuda_headers", "@protobuf//:protobuf_headers", diff --git a/tensorflow/compiler/tests/BUILD b/tensorflow/compiler/tests/BUILD index 044857d4222..432b24756d2 100644 --- a/tensorflow/compiler/tests/BUILD +++ b/tensorflow/compiler/tests/BUILD @@ -175,6 +175,11 @@ tf_xla_py_test( name = "slice_ops_test", size = "small", srcs = ["slice_ops_test.py"], + # TODO(b/62962492): Test fails with assertion error. + tags = [ + "manual", + "notap", + ], deps = [ ":xla_test", "//tensorflow/python:array_ops", @@ -456,6 +461,11 @@ cuda_py_test( "//tensorflow/python:math_ops", "//tensorflow/python:nn_ops", ], + # TODO(b/62961789): Test fails with SIGABRT + tags = [ + "manual", + "notap", + ], ) cc_library( @@ -524,8 +534,12 @@ cuda_py_test( # --dump_graph_dir, and the config file was written by hand. # # Run the following to build a minimal benchmark of the computation on Android: -# $ bazel build -c opt --config=android_arm \ -# third_party/tensorflow/compiler/tests:lstm_layer_inference_benchmark +# $ bazel build -c opt --cxxopt='-std=c++11' --linkopt='-lm' \ +# --cpu=armeabi-v7a \ +# --host_crosstool_top=@bazel_tools//tools/cpp:toolchain \ +# --crosstool_top=//external:android/crosstool \ +# //tensorflow/compiler/tests:lstm_layer_inference_benchmark + # # Currently the resulting binary size is ~190KB tf_library( diff --git a/tensorflow/contrib/lookup/lookup_ops.py b/tensorflow/contrib/lookup/lookup_ops.py index ce8518267f3..f53f38f3cf8 100644 --- a/tensorflow/contrib/lookup/lookup_ops.py +++ b/tensorflow/contrib/lookup/lookup_ops.py @@ -260,11 +260,7 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None): For example: ```python -<<<<<<< HEAD mapping_string = tf.constant(["emerson", "lake", "palmer"]) -======= - mapping_string = tf.constant(["emerson", "lake", "palmer") ->>>>>>> 338a7ead4475d6b97b420d6d1c56ff66815e3e7b indices = tf.constant([1, 5], tf.int64) values = tf.contrib.lookup.index_to_string( indices, mapping=mapping_string, default_value="UNKNOWN") diff --git a/tensorflow/core/kernels/sparse_reduce_sum_op.cc b/tensorflow/core/kernels/sparse_reduce_sum_op.cc deleted file mode 100644 index 074aab9f9e2..00000000000 --- a/tensorflow/core/kernels/sparse_reduce_sum_op.cc +++ /dev/null @@ -1,305 +0,0 @@ -/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -==============================================================================*/ - -// See docs in ../ops/sparse_ops.cc. - -#define EIGEN_USE_THREADS - -#include "tensorflow/core/framework/op_kernel.h" -#include "tensorflow/core/framework/register_types.h" -#include "tensorflow/core/framework/tensor.h" -#include "tensorflow/core/framework/tensor_util.h" -#include "tensorflow/core/framework/types.h" -#include "tensorflow/core/util/sparse/sparse_tensor.h" - -// TODO(b/31496047): Fix non-standard include order. -#include // clang-format off - -using tensorflow::sparse::SparseTensor; -using tensorflow::gtl::ArraySlice; - -namespace tensorflow { - -struct ReduceDetails { - // The dimensions to call Reorder() with. - std::vector reorder_dims; - - // The dimensions to call group() with after Reorder(). - std::vector group_by_dims; - - // The shape after reduction. - TensorShape reduced_shape; -}; - -// Compute common reduce parameters that'll be used for SparseTensor -// reductions. Usage: -// ReduceDetails reduction = SparseTensorReduceHelper(sp, axes, keep_dims); -// sp.Reorder(reduction.reorder_dims); -// for (const auto& g : sp.group(reduction.group_by_dims)) { -// ... -// } -// // Set output shape to reduction.reduced_shape. -ReduceDetails SparseTensorReduceHelper(const SparseTensor &sp, - gtl::ArraySlice axes_slice, - bool keep_dims) { - ReduceDetails reduction; - - std::vector reduction_axes(axes_slice.begin(), axes_slice.end()); - int ndims = sp.dims(); - for (int64 i = 0; i < reduction_axes.size(); ++i) { - reduction_axes[i] = (reduction_axes[i] + ndims) % ndims; - } - std::sort(reduction_axes.begin(), reduction_axes.end()); - - // (0) Calculate the grouping dimensions: - // group_by_dims == {0, .., NDIMS-1} \ reduction_axes. - std::vector perm(ndims); - std::iota(perm.begin(), perm.end(), 0); - - // Requires perm and reduction_axes_ be sorted; group_by_dims will be - // sorted as well. - std::set_difference( - perm.begin(), perm.end(), reduction_axes.begin(), reduction_axes.end(), - std::inserter(reduction.group_by_dims, reduction.group_by_dims.begin())); - - // Now append the rest of the axes (the complement of group_by_dims_); - // result is used by Reorder(). - reduction.reorder_dims = reduction.group_by_dims; - std::set_difference(perm.begin(), perm.end(), reduction.group_by_dims.begin(), - reduction.group_by_dims.end(), - std::back_inserter(reduction.reorder_dims)); - - // (1) Calculate the shape after reduction. - auto sp_shape = sp.shape(); - std::vector out_dim_sizes; - if (keep_dims) { - out_dim_sizes.reserve(ndims); - auto beg = reduction.group_by_dims.begin(); - auto end = reduction.group_by_dims.end(); - for (int d = 0; d < ndims; ++d) { - if (std::find(beg, end, d) == end) { - out_dim_sizes.push_back(1); // A reduced axis. - } else { - out_dim_sizes.push_back(sp_shape[d]); - } - } - } else { - out_dim_sizes = sp.PickDims(reduction.group_by_dims); - } - - reduction.reduced_shape = TensorShape(out_dim_sizes); - return reduction; -} - -Status ValidateInputs(const Tensor *shape_t, const Tensor *reduction_axes_t) { - // indices and values are validated in SparseTensor ctor. - if (!TensorShapeUtils::IsVector(shape_t->shape())) { - return errors::InvalidArgument( - "Expected input_shape to be a vector; got shape: ", - shape_t->shape().DebugString()); - } - if (!TensorShapeUtils::IsScalar(reduction_axes_t->shape()) && - !TensorShapeUtils::IsVector(reduction_axes_t->shape())) { - return errors::InvalidArgument( - "Expected reduction_axes to be a scalar or a vector; got shape: ", - reduction_axes_t->shape().DebugString()); - } - - const auto reduction_axes_flat = reduction_axes_t->flat(); - for (int64 i = 0; i < reduction_axes_flat.size(); i++) { - int32 axis = reduction_axes_flat(i); - if (axis < -shape_t->NumElements() || axis >= shape_t->NumElements()) { - return errors::InvalidArgument("Invalid reduction dimension ", axis, - ", for input with ", - shape_t->NumElements(), " dimensions."); - } - } - - return Status::OK(); -} - -template -class SparseReduceSumOp : public OpKernel { - public: - explicit SparseReduceSumOp(OpKernelConstruction *ctx) : OpKernel(ctx) { - OP_REQUIRES_OK(ctx, ctx->GetAttr("keep_dims", &keep_dims_)); - } - - void Compute(OpKernelContext *ctx) override { - const Tensor *indices_t, *values_t, *shape_t, *reduction_axes_t; - OP_REQUIRES_OK(ctx, ctx->input("input_indices", &indices_t)); - OP_REQUIRES_OK(ctx, ctx->input("input_values", &values_t)); - OP_REQUIRES_OK(ctx, ctx->input("input_shape", &shape_t)); - OP_REQUIRES_OK(ctx, ctx->input("reduction_axes", &reduction_axes_t)); - - OP_REQUIRES_OK(ctx, ValidateInputs(shape_t, reduction_axes_t)); - - // TODO(zongheng): we will call Reorder() below, which will modify - // in-place the underlying indices and values buffers. To avoid - // surprises of this kernel being stateful, we work around the above by - // making deep copies here. Remove this if/when we change Reorder()'s - // semantics. - const auto shape_vec = shape_t->vec(); - SparseTensor sp(tensor::DeepCopy(*indices_t), tensor::DeepCopy(*values_t), - TensorShape(shape_vec)); - ReduceDetails reduction = SparseTensorReduceHelper( - sp, reduction_axes_t->flat(), keep_dims_); - - Tensor *out_values; - OP_REQUIRES_OK( - ctx, ctx->allocate_output(0, reduction.reduced_shape, &out_values)); - auto out_flat = out_values->flat(); - out_flat.setZero(); - - Tensor tmp_group_sum; - OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum::value, - TensorShape({}), &tmp_group_sum)); - auto group_sum = tmp_group_sum.scalar(); - - // Compute strides, and use it to convert coords to flat index. The - // coordinates returned by .group() have the same ndims as group_by_dims. - gtl::InlinedVector output_strides(reduction.group_by_dims.size()); - if (!output_strides.empty()) { // Do this iff we don't reduce all. - output_strides.back() = 1; - for (int d = output_strides.size() - 2; d >= 0; --d) { - output_strides[d] = - output_strides[d + 1] * shape_vec(reduction.group_by_dims[d + 1]); - } - } - - auto CoordinatesToFlatIndex = [](ArraySlice coords, - ArraySlice strides) { - if (strides.empty()) { // Reduce all. - return 0LL; - } - CHECK_EQ(coords.size(), strides.size()); - int64 idx = 0; - for (int i = 0; i < coords.size(); ++i) { - idx += coords[i] * strides[i]; - } - return idx; - }; - - // Each group maps one-on-one onto a value in the reduced tensor. - // g.group() provides the coordinates of a particular reduced value. - sp.Reorder(reduction.reorder_dims); - for (const auto &g : sp.group(reduction.group_by_dims)) { - group_sum.device(ctx->eigen_cpu_device()) = g.template values().sum(); - const int64 idx = CoordinatesToFlatIndex(g.group(), output_strides); - out_flat(idx) = group_sum(); - VLOG(2) << "coords: " << str_util::Join(g.group(), ",") - << "; idx: " << idx << "; group sum: " << group_sum(); - } - } - - private: - // True if the number of dimensions should be maintained. - bool keep_dims_; -}; - -#define REGISTER_KERNELS(T) \ - REGISTER_KERNEL_BUILDER( \ - Name("SparseReduceSum").Device(DEVICE_CPU).TypeConstraint("T"), \ - SparseReduceSumOp) -TF_CALL_NUMBER_TYPES(REGISTER_KERNELS); -#undef REGISTER_KERNELS - -template -class SparseReduceSumSparseOp : public OpKernel { - public: - explicit SparseReduceSumSparseOp(OpKernelConstruction *ctx) : OpKernel(ctx) { - OP_REQUIRES_OK(ctx, ctx->GetAttr("keep_dims", &keep_dims_)); - } - - void Compute(OpKernelContext *ctx) override { - const Tensor *indices_t, *values_t, *shape_t, *reduction_axes_t; - OP_REQUIRES_OK(ctx, ctx->input("input_indices", &indices_t)); - OP_REQUIRES_OK(ctx, ctx->input("input_values", &values_t)); - OP_REQUIRES_OK(ctx, ctx->input("input_shape", &shape_t)); - OP_REQUIRES_OK(ctx, ctx->input("reduction_axes", &reduction_axes_t)); - - OP_REQUIRES_OK(ctx, ValidateInputs(shape_t, reduction_axes_t)); - - SparseTensor sp(tensor::DeepCopy(*indices_t), tensor::DeepCopy(*values_t), - TensorShape(shape_t->vec())); - ReduceDetails reduction = SparseTensorReduceHelper( - sp, reduction_axes_t->flat(), keep_dims_); - - sp.Reorder(reduction.reorder_dims); - // Count nnzs in the output SparseTensor. - int64 nnz = 0; - auto iter = sp.group(reduction.group_by_dims); - for (auto it = iter.begin(); it != iter.end(); ++it) { - nnz++; - } - - Tensor *out_indices_t; - OP_REQUIRES_OK(ctx, - ctx->allocate_output( - 0, TensorShape({nnz, reduction.reduced_shape.dims()}), - &out_indices_t)); - typename TTypes::Matrix out_indices_mat = - out_indices_t->matrix(); - // For keep_dims. We don't explicitly set dim fields for reduced dims below. - out_indices_mat.setZero(); - - Tensor *out_values_t; - OP_REQUIRES_OK(ctx, - ctx->allocate_output(1, TensorShape({nnz}), &out_values_t)); - auto out_flat = out_values_t->flat(); - - Tensor tmp_group_sum; - OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum::value, - TensorShape({}), &tmp_group_sum)); - auto group_sum = tmp_group_sum.scalar(); - int64 i = 0; - for (const auto &g : sp.group(reduction.group_by_dims)) { - group_sum.device(ctx->eigen_cpu_device()) = g.template values().sum(); - std::vector group = g.group(); - for (int64 j = 0; j < group.size(); j++) { - if (keep_dims_) { - out_indices_mat(i, reduction.group_by_dims[j]) = group[j]; - } else { - out_indices_mat(i, j) = group[j]; - } - } - out_flat(i) = group_sum(); - i++; - VLOG(2) << "coords: " << str_util::Join(g.group(), ",") - << "; group sum: " << group_sum(); - } - - Tensor *out_shape_t; - OP_REQUIRES_OK(ctx, ctx->allocate_output( - 2, TensorShape({reduction.reduced_shape.dims()}), - &out_shape_t)); - auto out_shape_flat = out_shape_t->flat(); - auto out_dim_sizes = reduction.reduced_shape.dim_sizes(); - std::copy(out_dim_sizes.begin(), out_dim_sizes.end(), &out_shape_flat(0)); - } - - private: - // True if the number of dimensions should be maintained. - bool keep_dims_; -}; - -#define REGISTER_KERNELS(T) \ - REGISTER_KERNEL_BUILDER( \ - Name("SparseReduceSumSparse").Device(DEVICE_CPU).TypeConstraint("T"), \ - SparseReduceSumSparseOp) -TF_CALL_NUMBER_TYPES(REGISTER_KERNELS); -#undef REGISTER_KERNELS - -} // namespace tensorflow diff --git a/tensorflow/python/BUILD b/tensorflow/python/BUILD index 22b18b9cde0..936348e01d2 100644 --- a/tensorflow/python/BUILD +++ b/tensorflow/python/BUILD @@ -3056,6 +3056,7 @@ py_test( srcs = ["client/session_clusterspec_prop_test.py"], srcs_version = "PY2AND3", tags = [ + "no_gpu", "no_pip_gpu", ], deps = [ @@ -3080,6 +3081,7 @@ py_test( srcs = ["client/session_list_devices_test.py"], srcs_version = "PY2AND3", tags = [ + "no_gpu", "no_pip_gpu", ], deps = [ diff --git a/tensorflow/python/kernel_tests/sparse_ops_test.py b/tensorflow/python/kernel_tests/sparse_ops_test.py index 14eb2cba68a..66643622260 100644 --- a/tensorflow/python/kernel_tests/sparse_ops_test.py +++ b/tensorflow/python/kernel_tests/sparse_ops_test.py @@ -19,7 +19,6 @@ from __future__ import division from __future__ import print_function import numpy as np -import unittest from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes @@ -606,7 +605,6 @@ class SparseReduceTest(test_util.TensorFlowTestCase): self._compare(sp_t, reduction_axes, ndims, True, False) self._compare(sp_t, reduction_axes, ndims, True, True) - @unittest.skipIf(np.__version__ == "1.13.0", "numpy 1.13 bug") def testSimpleAndRandomInputs(self): if np.__version__ == "1.13.0": self.skipTest("numpy 1.13.0 bug") @@ -646,7 +644,6 @@ class SparseReduceTest(test_util.TensorFlowTestCase): with self.assertRaisesOpError("Invalid reduction dimension 2"): sparse_ops.sparse_reduce_max(sp_t, 2).eval() - @unittest.skipIf(np.__version__ == "1.13.0", "numpy 1.13 bug") def testGradient(self): if np.__version__ == "1.13.0": self.skipTest("numpy 1.13.0 bug")