More simplifications to the text.
This commit is contained in:
parent
d7c971c156
commit
ace209ce76
@ -475,20 +475,13 @@ loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
|
||||
|
||||
Let's take a closer look at what's happening above.
|
||||
|
||||
Our `labels` tensor contains a list of predictions for our examples, e.g. `[1,
|
||||
9, ...]`. By using `tf.losses.sparse_softmax_cross_entropy()` we do not need to convert `labels`
|
||||
to the corresponding
|
||||
[one-hot encoding](https://www.quora.com/What-is-one-hot-encoding-and-when-is-it-used-in-data-science)
|
||||
that is commonly used in machine learning applications.
|
||||
Our `labels` tensor contains a list of prediction indices for our examples, e.g. `[1,
|
||||
9, ...]`. `logits` contains the linear outputs of our last layer.
|
||||
|
||||
Next, we compute cross-entropy of `labels` and the softmax of the
|
||||
predictions from our logits layer. `tf.losses.sparse_softmax_cross_entropy()` takes
|
||||
`labels` and `logits` as arguments, performs softmax activation on
|
||||
`logits`, calculates cross-entropy, and returns our `loss` as a scalar `Tensor`:
|
||||
`tf.losses.sparse_softmax_cross_entropy`, calculates the softmax crossentropy
|
||||
(aka: categorical crossentropy, negative log-likelihood) from these two inputs
|
||||
in an efficient, numerically stable way.
|
||||
|
||||
```python
|
||||
loss = tf.losses.sparse_softmax_cross_entropy(labels=onehot_labels, logits=logits)
|
||||
```
|
||||
|
||||
### Configure the Training Op
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user