diff --git a/tensorflow/docs_src/tutorials/layers.md b/tensorflow/docs_src/tutorials/layers.md index a3b8b7e1fd4..61b00ad0f26 100644 --- a/tensorflow/docs_src/tutorials/layers.md +++ b/tensorflow/docs_src/tutorials/layers.md @@ -475,20 +475,13 @@ loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) Let's take a closer look at what's happening above. -Our `labels` tensor contains a list of predictions for our examples, e.g. `[1, -9, ...]`. By using `tf.losses.sparse_softmax_cross_entropy()` we do not need to convert `labels` -to the corresponding -[one-hot encoding](https://www.quora.com/What-is-one-hot-encoding-and-when-is-it-used-in-data-science) -that is commonly used in machine learning applications. +Our `labels` tensor contains a list of prediction indices for our examples, e.g. `[1, +9, ...]`. `logits` contains the linear outputs of our last layer. -Next, we compute cross-entropy of `labels` and the softmax of the -predictions from our logits layer. `tf.losses.sparse_softmax_cross_entropy()` takes -`labels` and `logits` as arguments, performs softmax activation on -`logits`, calculates cross-entropy, and returns our `loss` as a scalar `Tensor`: +`tf.losses.sparse_softmax_cross_entropy`, calculates the softmax crossentropy +(aka: categorical crossentropy, negative log-likelihood) from these two inputs +in an efficient, numerically stable way. -```python -loss = tf.losses.sparse_softmax_cross_entropy(labels=onehot_labels, logits=logits) -``` ### Configure the Training Op