Merge pull request #37244 from jaketae:nasnet-reference

PiperOrigin-RevId: 298690920
Change-Id: Id1329cb44cc9f06a6a9710de96bcd4b34827399b
This commit is contained in:
TensorFlower Gardener 2020-03-03 14:17:07 -08:00
commit a007002f21
9 changed files with 63 additions and 4 deletions

View File

@ -137,6 +137,10 @@ def DenseNet(
): ):
"""Instantiates the DenseNet architecture. """Instantiates the DenseNet architecture.
Reference paper:
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.
@ -394,6 +398,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """ DOC = """
Reference paper:
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -161,6 +161,10 @@ def EfficientNet(
): ):
"""Instantiates the EfficientNet architecture using given scaling coefficients. """Instantiates the EfficientNet architecture using given scaling coefficients.
Reference paper:
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
(https://arxiv.org/abs/1905.11946) (ICML 2019)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -52,6 +52,11 @@ def InceptionResNetV2(include_top=True,
**kwargs): **kwargs):
"""Instantiates the Inception-ResNet v2 architecture. """Instantiates the Inception-ResNet v2 architecture.
Reference paper:
- [Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
(AAAI 2017)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -69,6 +69,9 @@ MACs stands for Multiply Adds
| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 | | [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 |
| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 | | [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 |
Reference paper:
- [MobileNetV2: Inverted Residuals and Linear Bottlenecks]
(https://arxiv.org/abs/1801.04381) (CVPR 2018)
""" """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division

View File

@ -33,7 +33,7 @@ The below table describes the performance on ImageNet 2012:
| NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 | | NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 |
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
References: Reference paper:
- [Learning Transferable Architectures for Scalable Image Recognition] - [Learning Transferable Architectures for Scalable Image Recognition]
(https://arxiv.org/abs/1707.07012) (CVPR 2018) (https://arxiv.org/abs/1707.07012) (CVPR 2018)
""" """
@ -78,6 +78,10 @@ def NASNet(
): ):
"""Instantiates a NASNet model. """Instantiates a NASNet model.
Reference paper:
- [Learning Transferable Architectures for Scalable Image Recognition]
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
# pylint: disable=invalid-name # pylint: disable=invalid-name
"""ResNet models for Keras.""" """ResNet models for Keras.
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
@ -65,6 +70,10 @@ def ResNet(stack_fn,
**kwargs): **kwargs):
"""Instantiates the ResNet, ResNetV2, and ResNeXt architecture. """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.
@ -549,6 +558,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """ DOC = """
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
# pylint: disable=invalid-name # pylint: disable=invalid-name
"""ResNet v2 models for Keras.""" """ResNet v2 models for Keras.
Reference paper:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
@ -164,6 +169,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """ DOC = """
Reference paper:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
Optionally loads weights pre-trained on ImageNet. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
# pylint: disable=invalid-name # pylint: disable=invalid-name
"""VGG16 model for Keras.""" """VGG16 model for Keras.
Reference paper:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition]
(https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
@ -48,6 +53,10 @@ def VGG16(
): ):
"""Instantiates the VGG16 model. """Instantiates the VGG16 model.
Reference paper:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
By default, it loads weights pre-trained on ImageNet. Check 'weights' for By default, it loads weights pre-trained on ImageNet. Check 'weights' for
other options. other options.

View File

@ -53,6 +53,10 @@ def VGG19(
): ):
"""Instantiates the VGG19 architecture. """Instantiates the VGG19 architecture.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
By default, it loads weights pre-trained on ImageNet. Check 'weights' for By default, it loads weights pre-trained on ImageNet. Check 'weights' for
other options. other options.