diff --git a/tensorflow/python/keras/applications/densenet.py b/tensorflow/python/keras/applications/densenet.py index a93f3323fd7..9b11c342536 100644 --- a/tensorflow/python/keras/applications/densenet.py +++ b/tensorflow/python/keras/applications/densenet.py @@ -137,6 +137,10 @@ def DenseNet( ): """Instantiates the DenseNet architecture. + Reference paper: + - [Densely Connected Convolutional Networks] + (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. @@ -394,6 +398,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ + Reference paper: + - [Densely Connected Convolutional Networks] + (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/efficientnet.py b/tensorflow/python/keras/applications/efficientnet.py index b8af253706e..4b9487dcdd6 100644 --- a/tensorflow/python/keras/applications/efficientnet.py +++ b/tensorflow/python/keras/applications/efficientnet.py @@ -161,6 +161,10 @@ def EfficientNet( ): """Instantiates the EfficientNet architecture using given scaling coefficients. + Reference paper: + - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks] + (https://arxiv.org/abs/1905.11946) (ICML 2019) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/inception_resnet_v2.py b/tensorflow/python/keras/applications/inception_resnet_v2.py index e78b6a3da47..7f338f82597 100644 --- a/tensorflow/python/keras/applications/inception_resnet_v2.py +++ b/tensorflow/python/keras/applications/inception_resnet_v2.py @@ -52,6 +52,11 @@ def InceptionResNetV2(include_top=True, **kwargs): """Instantiates the Inception-ResNet v2 architecture. + Reference paper: + - [Inception-v4, Inception-ResNet and the Impact of + Residual Connections on Learning](https://arxiv.org/abs/1602.07261) + (AAAI 2017) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/mobilenet_v2.py b/tensorflow/python/keras/applications/mobilenet_v2.py index ca5dcf8fa2d..bdd21c3da62 100644 --- a/tensorflow/python/keras/applications/mobilenet_v2.py +++ b/tensorflow/python/keras/applications/mobilenet_v2.py @@ -69,6 +69,9 @@ MACs stands for Multiply Adds | [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 | | [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 | + Reference paper: + - [MobileNetV2: Inverted Residuals and Linear Bottlenecks] + (https://arxiv.org/abs/1801.04381) (CVPR 2018) """ from __future__ import absolute_import from __future__ import division diff --git a/tensorflow/python/keras/applications/nasnet.py b/tensorflow/python/keras/applications/nasnet.py index 816ef267b2b..3da415dbb12 100644 --- a/tensorflow/python/keras/applications/nasnet.py +++ b/tensorflow/python/keras/applications/nasnet.py @@ -33,7 +33,7 @@ The below table describes the performance on ImageNet 2012: | NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 | -------------------------------------------------------------------------------- -References: +Reference paper: - [Learning Transferable Architectures for Scalable Image Recognition] (https://arxiv.org/abs/1707.07012) (CVPR 2018) """ @@ -78,6 +78,10 @@ def NASNet( ): """Instantiates a NASNet model. + Reference paper: + - [Learning Transferable Architectures for Scalable Image Recognition] + (https://arxiv.org/abs/1707.07012) (CVPR 2018) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/resnet.py b/tensorflow/python/keras/applications/resnet.py index eaeefb3ccf6..3e33bb04bdd 100644 --- a/tensorflow/python/keras/applications/resnet.py +++ b/tensorflow/python/keras/applications/resnet.py @@ -13,7 +13,12 @@ # limitations under the License. # ============================================================================== # pylint: disable=invalid-name -"""ResNet models for Keras.""" +"""ResNet models for Keras. + +Reference paper: + - [Deep Residual Learning for Image Recognition] + (https://arxiv.org/abs/1512.03385) (CVPR 2015) +""" from __future__ import absolute_import from __future__ import division from __future__ import print_function @@ -65,6 +70,10 @@ def ResNet(stack_fn, **kwargs): """Instantiates the ResNet, ResNetV2, and ResNeXt architecture. + Reference paper: + - [Deep Residual Learning for Image Recognition] + (https://arxiv.org/abs/1512.03385) (CVPR 2015) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. @@ -549,6 +558,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ + Reference paper: + - [Deep Residual Learning for Image Recognition] + (https://arxiv.org/abs/1512.03385) (CVPR 2015) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/resnet_v2.py b/tensorflow/python/keras/applications/resnet_v2.py index 1be0b636223..2e1ee272c4b 100644 --- a/tensorflow/python/keras/applications/resnet_v2.py +++ b/tensorflow/python/keras/applications/resnet_v2.py @@ -13,7 +13,12 @@ # limitations under the License. # ============================================================================== # pylint: disable=invalid-name -"""ResNet v2 models for Keras.""" +"""ResNet v2 models for Keras. + +Reference paper: + - [Identity Mappings in Deep Residual Networks] + (https://arxiv.org/abs/1603.05027) (CVPR 2016) +""" from __future__ import absolute_import from __future__ import division from __future__ import print_function @@ -164,6 +169,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ + Reference paper: + - [Identity Mappings in Deep Residual Networks] + (https://arxiv.org/abs/1603.05027) (CVPR 2016) + Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. diff --git a/tensorflow/python/keras/applications/vgg16.py b/tensorflow/python/keras/applications/vgg16.py index f4ec39a9d50..534d2cff6be 100644 --- a/tensorflow/python/keras/applications/vgg16.py +++ b/tensorflow/python/keras/applications/vgg16.py @@ -13,7 +13,12 @@ # limitations under the License. # ============================================================================== # pylint: disable=invalid-name -"""VGG16 model for Keras.""" +"""VGG16 model for Keras. + +Reference paper: + - [Very Deep Convolutional Networks for Large-Scale Image Recognition] + (https://arxiv.org/abs/1409.1556) (ICLR 2015) +""" from __future__ import absolute_import from __future__ import division from __future__ import print_function @@ -48,6 +53,10 @@ def VGG16( ): """Instantiates the VGG16 model. + Reference paper: + - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( + https://arxiv.org/abs/1409.1556) (ICLR 2015) + By default, it loads weights pre-trained on ImageNet. Check 'weights' for other options. diff --git a/tensorflow/python/keras/applications/vgg19.py b/tensorflow/python/keras/applications/vgg19.py index 2e83937ac35..81c90e1ebb4 100644 --- a/tensorflow/python/keras/applications/vgg19.py +++ b/tensorflow/python/keras/applications/vgg19.py @@ -53,6 +53,10 @@ def VGG19( ): """Instantiates the VGG19 architecture. + Reference: + - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( + https://arxiv.org/abs/1409.1556) (ICLR 2015) + By default, it loads weights pre-trained on ImageNet. Check 'weights' for other options.