Merge pull request #37244 from jaketae:nasnet-reference

PiperOrigin-RevId: 298690920
Change-Id: Id1329cb44cc9f06a6a9710de96bcd4b34827399b
This commit is contained in:
TensorFlower Gardener 2020-03-03 14:17:07 -08:00
commit a007002f21
9 changed files with 63 additions and 4 deletions

View File

@ -137,6 +137,10 @@ def DenseNet(
):
"""Instantiates the DenseNet architecture.
Reference paper:
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
@ -394,6 +398,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """
Reference paper:
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -161,6 +161,10 @@ def EfficientNet(
):
"""Instantiates the EfficientNet architecture using given scaling coefficients.
Reference paper:
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
(https://arxiv.org/abs/1905.11946) (ICML 2019)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -52,6 +52,11 @@ def InceptionResNetV2(include_top=True,
**kwargs):
"""Instantiates the Inception-ResNet v2 architecture.
Reference paper:
- [Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
(AAAI 2017)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -69,6 +69,9 @@ MACs stands for Multiply Adds
| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 |
| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 |
Reference paper:
- [MobileNetV2: Inverted Residuals and Linear Bottlenecks]
(https://arxiv.org/abs/1801.04381) (CVPR 2018)
"""
from __future__ import absolute_import
from __future__ import division

View File

@ -33,7 +33,7 @@ The below table describes the performance on ImageNet 2012:
| NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 |
--------------------------------------------------------------------------------
References:
Reference paper:
- [Learning Transferable Architectures for Scalable Image Recognition]
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
"""
@ -78,6 +78,10 @@ def NASNet(
):
"""Instantiates a NASNet model.
Reference paper:
- [Learning Transferable Architectures for Scalable Image Recognition]
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""ResNet models for Keras."""
"""ResNet models for Keras.
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
@ -65,6 +70,10 @@ def ResNet(stack_fn,
**kwargs):
"""Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
@ -549,6 +558,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """
Reference paper:
- [Deep Residual Learning for Image Recognition]
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""ResNet v2 models for Keras."""
"""ResNet v2 models for Keras.
Reference paper:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
@ -164,6 +169,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
DOC = """
Reference paper:
- [Identity Mappings in Deep Residual Networks]
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

View File

@ -13,7 +13,12 @@
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""VGG16 model for Keras."""
"""VGG16 model for Keras.
Reference paper:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition]
(https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
@ -48,6 +53,10 @@ def VGG16(
):
"""Instantiates the VGG16 model.
Reference paper:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
other options.

View File

@ -53,6 +53,10 @@ def VGG19(
):
"""Instantiates the VGG19 architecture.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
other options.