Merge pull request #37244 from jaketae:nasnet-reference
PiperOrigin-RevId: 298690920 Change-Id: Id1329cb44cc9f06a6a9710de96bcd4b34827399b
This commit is contained in:
commit
a007002f21
@ -137,6 +137,10 @@ def DenseNet(
|
||||
):
|
||||
"""Instantiates the DenseNet architecture.
|
||||
|
||||
Reference paper:
|
||||
- [Densely Connected Convolutional Networks]
|
||||
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
@ -394,6 +398,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
||||
Reference paper:
|
||||
- [Densely Connected Convolutional Networks]
|
||||
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -161,6 +161,10 @@ def EfficientNet(
|
||||
):
|
||||
"""Instantiates the EfficientNet architecture using given scaling coefficients.
|
||||
|
||||
Reference paper:
|
||||
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
|
||||
(https://arxiv.org/abs/1905.11946) (ICML 2019)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -52,6 +52,11 @@ def InceptionResNetV2(include_top=True,
|
||||
**kwargs):
|
||||
"""Instantiates the Inception-ResNet v2 architecture.
|
||||
|
||||
Reference paper:
|
||||
- [Inception-v4, Inception-ResNet and the Impact of
|
||||
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
|
||||
(AAAI 2017)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -69,6 +69,9 @@ MACs stands for Multiply Adds
|
||||
| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 |
|
||||
| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 |
|
||||
|
||||
Reference paper:
|
||||
- [MobileNetV2: Inverted Residuals and Linear Bottlenecks]
|
||||
(https://arxiv.org/abs/1801.04381) (CVPR 2018)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -33,7 +33,7 @@ The below table describes the performance on ImageNet 2012:
|
||||
| NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 |
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
References:
|
||||
Reference paper:
|
||||
- [Learning Transferable Architectures for Scalable Image Recognition]
|
||||
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
|
||||
"""
|
||||
@ -78,6 +78,10 @@ def NASNet(
|
||||
):
|
||||
"""Instantiates a NASNet model.
|
||||
|
||||
Reference paper:
|
||||
- [Learning Transferable Architectures for Scalable Image Recognition]
|
||||
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -13,7 +13,12 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
# pylint: disable=invalid-name
|
||||
"""ResNet models for Keras."""
|
||||
"""ResNet models for Keras.
|
||||
|
||||
Reference paper:
|
||||
- [Deep Residual Learning for Image Recognition]
|
||||
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -65,6 +70,10 @@ def ResNet(stack_fn,
|
||||
**kwargs):
|
||||
"""Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
|
||||
|
||||
Reference paper:
|
||||
- [Deep Residual Learning for Image Recognition]
|
||||
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
@ -549,6 +558,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
||||
Reference paper:
|
||||
- [Deep Residual Learning for Image Recognition]
|
||||
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -13,7 +13,12 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
# pylint: disable=invalid-name
|
||||
"""ResNet v2 models for Keras."""
|
||||
"""ResNet v2 models for Keras.
|
||||
|
||||
Reference paper:
|
||||
- [Identity Mappings in Deep Residual Networks]
|
||||
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -164,6 +169,10 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
||||
Reference paper:
|
||||
- [Identity Mappings in Deep Residual Networks]
|
||||
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
@ -13,7 +13,12 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
# pylint: disable=invalid-name
|
||||
"""VGG16 model for Keras."""
|
||||
"""VGG16 model for Keras.
|
||||
|
||||
Reference paper:
|
||||
- [Very Deep Convolutional Networks for Large-Scale Image Recognition]
|
||||
(https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -48,6 +53,10 @@ def VGG16(
|
||||
):
|
||||
"""Instantiates the VGG16 model.
|
||||
|
||||
Reference paper:
|
||||
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
|
||||
https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
||||
|
||||
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
|
||||
other options.
|
||||
|
||||
|
@ -53,6 +53,10 @@ def VGG19(
|
||||
):
|
||||
"""Instantiates the VGG19 architecture.
|
||||
|
||||
Reference:
|
||||
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
|
||||
https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
||||
|
||||
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
|
||||
other options.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user