Update keras feature column test to explicitly use keras symbols.
PiperOrigin-RevId: 334662640 Change-Id: Iaf0b99006622b2d9d0549cb9be7e59f915c0102c
This commit is contained in:
parent
f98fc1387d
commit
9a8b1c6d50
@ -26,6 +26,7 @@ from tensorflow.python.feature_column import feature_column_lib as fc
|
|||||||
from tensorflow.python.keras import keras_parameterized
|
from tensorflow.python.keras import keras_parameterized
|
||||||
from tensorflow.python.keras import metrics as metrics_module
|
from tensorflow.python.keras import metrics as metrics_module
|
||||||
from tensorflow.python.keras import testing_utils
|
from tensorflow.python.keras import testing_utils
|
||||||
|
from tensorflow.python.keras.feature_column import dense_features as df
|
||||||
from tensorflow.python.keras.utils import np_utils
|
from tensorflow.python.keras.utils import np_utils
|
||||||
from tensorflow.python.platform import test
|
from tensorflow.python.platform import test
|
||||||
|
|
||||||
@ -34,7 +35,7 @@ class TestDNNModel(keras.models.Model):
|
|||||||
|
|
||||||
def __init__(self, feature_columns, units, name=None, **kwargs):
|
def __init__(self, feature_columns, units, name=None, **kwargs):
|
||||||
super(TestDNNModel, self).__init__(name=name, **kwargs)
|
super(TestDNNModel, self).__init__(name=name, **kwargs)
|
||||||
self._input_layer = fc.DenseFeatures(feature_columns, name='input_layer')
|
self._input_layer = df.DenseFeatures(feature_columns, name='input_layer')
|
||||||
self._dense_layer = keras.layers.Dense(units, name='dense_layer')
|
self._dense_layer = keras.layers.Dense(units, name='dense_layer')
|
||||||
|
|
||||||
def call(self, features):
|
def call(self, features):
|
||||||
@ -52,7 +53,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
def test_sequential_model(self):
|
def test_sequential_model(self):
|
||||||
columns = [fc.numeric_column('a')]
|
columns = [fc.numeric_column('a')]
|
||||||
model = keras.models.Sequential([
|
model = keras.models.Sequential([
|
||||||
fc.DenseFeatures(columns),
|
df.DenseFeatures(columns),
|
||||||
keras.layers.Dense(64, activation='relu'),
|
keras.layers.Dense(64, activation='relu'),
|
||||||
keras.layers.Dense(20, activation='softmax')
|
keras.layers.Dense(20, activation='softmax')
|
||||||
])
|
])
|
||||||
@ -74,7 +75,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
def test_sequential_model_with_ds_input(self):
|
def test_sequential_model_with_ds_input(self):
|
||||||
columns = [fc.numeric_column('a')]
|
columns = [fc.numeric_column('a')]
|
||||||
model = keras.models.Sequential([
|
model = keras.models.Sequential([
|
||||||
fc.DenseFeatures(columns),
|
df.DenseFeatures(columns),
|
||||||
keras.layers.Dense(64, activation='relu'),
|
keras.layers.Dense(64, activation='relu'),
|
||||||
keras.layers.Dense(20, activation='softmax')
|
keras.layers.Dense(20, activation='softmax')
|
||||||
])
|
])
|
||||||
@ -112,7 +113,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
crossed_feature = fc.indicator_column(crossed_feature)
|
crossed_feature = fc.indicator_column(crossed_feature)
|
||||||
feature_columns.append(crossed_feature)
|
feature_columns.append(crossed_feature)
|
||||||
|
|
||||||
feature_layer = fc.DenseFeatures(feature_columns)
|
feature_layer = df.DenseFeatures(feature_columns)
|
||||||
|
|
||||||
model = keras.models.Sequential([
|
model = keras.models.Sequential([
|
||||||
feature_layer,
|
feature_layer,
|
||||||
@ -185,7 +186,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
col_a = fc.numeric_column('a')
|
col_a = fc.numeric_column('a')
|
||||||
col_b = fc.numeric_column('b')
|
col_b = fc.numeric_column('b')
|
||||||
|
|
||||||
feature_layer = fc.DenseFeatures([col_a, col_b], name='fc')
|
feature_layer = df.DenseFeatures([col_a, col_b], name='fc')
|
||||||
dense = keras.layers.Dense(4)
|
dense = keras.layers.Dense(4)
|
||||||
|
|
||||||
# This seems problematic.... We probably need something for DenseFeatures
|
# This seems problematic.... We probably need something for DenseFeatures
|
||||||
@ -213,8 +214,8 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
col_b = fc.numeric_column('b')
|
col_b = fc.numeric_column('b')
|
||||||
col_c = fc.numeric_column('c')
|
col_c = fc.numeric_column('c')
|
||||||
|
|
||||||
fc1 = fc.DenseFeatures([col_a, col_b], name='fc1')
|
fc1 = df.DenseFeatures([col_a, col_b], name='fc1')
|
||||||
fc2 = fc.DenseFeatures([col_b, col_c], name='fc2')
|
fc2 = df.DenseFeatures([col_b, col_c], name='fc2')
|
||||||
dense = keras.layers.Dense(4)
|
dense = keras.layers.Dense(4)
|
||||||
|
|
||||||
# This seems problematic.... We probably need something for DenseFeatures
|
# This seems problematic.... We probably need something for DenseFeatures
|
||||||
@ -289,7 +290,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
|
|||||||
categorical_cols = [fc.categorical_column_with_hash_bucket('cabin', 10)]
|
categorical_cols = [fc.categorical_column_with_hash_bucket('cabin', 10)]
|
||||||
feature_cols = ([fc.numeric_column('age')]
|
feature_cols = ([fc.numeric_column('age')]
|
||||||
+ [fc.indicator_column(cc) for cc in categorical_cols])
|
+ [fc.indicator_column(cc) for cc in categorical_cols])
|
||||||
layers = [fc.DenseFeatures(feature_cols),
|
layers = [df.DenseFeatures(feature_cols),
|
||||||
keras.layers.Dense(128),
|
keras.layers.Dense(128),
|
||||||
keras.layers.Dense(1)]
|
keras.layers.Dense(1)]
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user