diff --git a/tensorflow/python/keras/engine/feature_columns_integration_test.py b/tensorflow/python/keras/engine/feature_columns_integration_test.py index 04d708feb5e..b70e33b9c8f 100644 --- a/tensorflow/python/keras/engine/feature_columns_integration_test.py +++ b/tensorflow/python/keras/engine/feature_columns_integration_test.py @@ -26,6 +26,7 @@ from tensorflow.python.feature_column import feature_column_lib as fc from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import testing_utils +from tensorflow.python.keras.feature_column import dense_features as df from tensorflow.python.keras.utils import np_utils from tensorflow.python.platform import test @@ -34,7 +35,7 @@ class TestDNNModel(keras.models.Model): def __init__(self, feature_columns, units, name=None, **kwargs): super(TestDNNModel, self).__init__(name=name, **kwargs) - self._input_layer = fc.DenseFeatures(feature_columns, name='input_layer') + self._input_layer = df.DenseFeatures(feature_columns, name='input_layer') self._dense_layer = keras.layers.Dense(units, name='dense_layer') def call(self, features): @@ -52,7 +53,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): def test_sequential_model(self): columns = [fc.numeric_column('a')] model = keras.models.Sequential([ - fc.DenseFeatures(columns), + df.DenseFeatures(columns), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(20, activation='softmax') ]) @@ -74,7 +75,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): def test_sequential_model_with_ds_input(self): columns = [fc.numeric_column('a')] model = keras.models.Sequential([ - fc.DenseFeatures(columns), + df.DenseFeatures(columns), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(20, activation='softmax') ]) @@ -112,7 +113,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): crossed_feature = fc.indicator_column(crossed_feature) feature_columns.append(crossed_feature) - feature_layer = fc.DenseFeatures(feature_columns) + feature_layer = df.DenseFeatures(feature_columns) model = keras.models.Sequential([ feature_layer, @@ -185,7 +186,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): col_a = fc.numeric_column('a') col_b = fc.numeric_column('b') - feature_layer = fc.DenseFeatures([col_a, col_b], name='fc') + feature_layer = df.DenseFeatures([col_a, col_b], name='fc') dense = keras.layers.Dense(4) # This seems problematic.... We probably need something for DenseFeatures @@ -213,8 +214,8 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): col_b = fc.numeric_column('b') col_c = fc.numeric_column('c') - fc1 = fc.DenseFeatures([col_a, col_b], name='fc1') - fc2 = fc.DenseFeatures([col_b, col_c], name='fc2') + fc1 = df.DenseFeatures([col_a, col_b], name='fc1') + fc2 = df.DenseFeatures([col_b, col_c], name='fc2') dense = keras.layers.Dense(4) # This seems problematic.... We probably need something for DenseFeatures @@ -289,7 +290,7 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): categorical_cols = [fc.categorical_column_with_hash_bucket('cabin', 10)] feature_cols = ([fc.numeric_column('age')] + [fc.indicator_column(cc) for cc in categorical_cols]) - layers = [fc.DenseFeatures(feature_cols), + layers = [df.DenseFeatures(feature_cols), keras.layers.Dense(128), keras.layers.Dense(1)]