Add a PrecisionAtRecall metric.

PiperOrigin-RevId: 274973353
Change-Id: I4a64d6127a0bf9281627f7a3de8cc3fccca882dd
This commit is contained in:
A. Unique TensorFlower 2019-10-16 00:31:13 -07:00 committed by TensorFlower Gardener
parent 1ecb21d426
commit 95bb950b57
8 changed files with 877 additions and 2 deletions

View File

@ -1556,7 +1556,7 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase):
Args:
sensitivity: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given specificity.
use for matching the given sensitivity.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
"""
@ -1573,7 +1573,7 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase):
self.true_positives, self.true_positives + self.false_negatives)
# Find the index of the threshold where the sensitivity is closest to the
# given specificity.
# requested value.
min_index = math_ops.argmin(
math_ops.abs(sensitivities - self.value), axis=0)
min_index = math_ops.cast(min_index, dtypes.int32)
@ -1592,6 +1592,79 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase):
return dict(list(base_config.items()) + list(config.items()))
@keras_export('keras.metrics.PrecisionAtRecall')
class PrecisionAtRecall(SensitivitySpecificityBase):
"""Computes the precision at a given recall.
This metric creates four local variables, `true_positives`, `true_negatives`,
`false_positives` and `false_negatives` that are used to compute the
precision at the given recall. The threshold for the given recall
value is computed and used to evaluate the corresponding precision.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Usage:
```python
m = tf.keras.metrics.PrecisionAtRecall(0.8, num_thresholds=1)
m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
print('Final result: ', m.result().numpy()) # Final result: 1.0
```
Usage with tf.keras API:
```python
model = tf.keras.Model(inputs, outputs)
model.compile(
'sgd',
loss='mse',
metrics=[tf.keras.metrics.PrecisionAtRecall()])
```
"""
def __init__(self, recall, num_thresholds=200, name=None, dtype=None):
"""Creates a `PrecisionAtRecall` instance.
Args:
recall: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given recall.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
"""
if recall < 0 or recall > 1:
raise ValueError('`recall` must be in the range [0, 1].')
self.recall = recall
self.num_thresholds = num_thresholds
super(PrecisionAtRecall, self).__init__(
value=recall,
num_thresholds=num_thresholds,
name=name,
dtype=dtype)
def result(self):
# Calculate recall at all the thresholds.
recalls = math_ops.div_no_nan(
self.true_positives, self.true_positives + self.false_negatives)
# Find the index of the threshold where the recall is closest to the
# requested value.
min_index = math_ops.argmin(
math_ops.abs(recalls - self.value), axis=0)
min_index = math_ops.cast(min_index, dtypes.int32)
# Compute precision at that index.
return math_ops.div_no_nan(
self.true_positives[min_index],
self.true_positives[min_index] + self.false_positives[min_index])
def get_config(self):
config = {'num_thresholds': self.num_thresholds, 'recall': self.recall}
base_config = super(PrecisionAtRecall, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export('keras.metrics.AUC')
class AUC(Metric):
"""Computes the approximate AUC (Area under the curve) via a Riemann sum.

View File

@ -919,6 +919,103 @@ class SpecificityAtSensitivityTest(test.TestCase, parameterized.TestCase):
metrics.SpecificityAtSensitivity(0.4, num_thresholds=-1)
@test_util.run_all_in_graph_and_eager_modes
class PrecisionAtRecallTest(test.TestCase, parameterized.TestCase):
def test_config(self):
s_obj = metrics.PrecisionAtRecall(
0.4, num_thresholds=100, name='precision_at_recall_1')
self.assertEqual(s_obj.name, 'precision_at_recall_1')
self.assertLen(s_obj.variables, 4)
self.assertEqual(s_obj.recall, 0.4)
self.assertEqual(s_obj.num_thresholds, 100)
# Check save and restore config
s_obj2 = metrics.PrecisionAtRecall.from_config(s_obj.get_config())
self.assertEqual(s_obj2.name, 'precision_at_recall_1')
self.assertLen(s_obj2.variables, 4)
self.assertEqual(s_obj2.recall, 0.4)
self.assertEqual(s_obj2.num_thresholds, 100)
def test_value_is_idempotent(self):
s_obj = metrics.PrecisionAtRecall(0.7)
y_pred = random_ops.random_uniform((10, 3),
maxval=1,
dtype=dtypes.float32,
seed=1)
y_true = random_ops.random_uniform((10, 3),
maxval=2,
dtype=dtypes.int64,
seed=1)
update_op = s_obj.update_state(y_true, y_pred)
self.evaluate(variables.variables_initializer(s_obj.variables))
# Run several updates.
for _ in range(10):
self.evaluate(update_op)
# Then verify idempotency.
initial_specificity = self.evaluate(s_obj.result())
for _ in range(10):
self.assertAlmostEqual(initial_specificity, self.evaluate(s_obj.result()),
1e-3)
def test_unweighted_all_correct(self):
s_obj = metrics.PrecisionAtRecall(0.7)
inputs = np.random.randint(0, 2, size=(100, 1))
y_pred = constant_op.constant(inputs, dtype=dtypes.float32)
y_true = constant_op.constant(inputs)
self.evaluate(variables.variables_initializer(s_obj.variables))
result = s_obj(y_true, y_pred)
self.assertAlmostEqual(1, self.evaluate(result))
def test_unweighted_high_recall(self):
s_obj = metrics.PrecisionAtRecall(0.8)
pred_values = [0.0, 0.1, 0.2, 0.3, 0.5, 0.4, 0.5, 0.6, 0.8, 0.9]
label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
# For a score between 0.4 and 0.5, we expect 0.8 precision, 0.8 recall.
y_pred = constant_op.constant(pred_values, dtype=dtypes.float32)
y_true = constant_op.constant(label_values)
self.evaluate(variables.variables_initializer(s_obj.variables))
result = s_obj(y_true, y_pred)
self.assertAlmostEqual(0.8, self.evaluate(result))
def test_unweighted_low_recall(self):
s_obj = metrics.PrecisionAtRecall(0.4)
pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.15, 0.25, 0.26, 0.26]
label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
y_pred = constant_op.constant(pred_values, dtype=dtypes.float32)
y_true = constant_op.constant(label_values)
self.evaluate(variables.variables_initializer(s_obj.variables))
result = s_obj(y_true, y_pred)
self.assertAlmostEqual(0.5, self.evaluate(result))
@parameterized.parameters([dtypes.bool, dtypes.int32, dtypes.float32])
def test_weighted(self, label_dtype):
s_obj = metrics.PrecisionAtRecall(0.4)
pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26]
label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
weight_values = [2, 2, 1, 1, 1, 1, 1, 2, 2, 2]
y_pred = constant_op.constant(pred_values, dtype=dtypes.float32)
y_true = math_ops.cast(label_values, dtype=label_dtype)
weights = constant_op.constant(weight_values)
self.evaluate(variables.variables_initializer(s_obj.variables))
result = s_obj(y_true, y_pred, sample_weight=weights)
self.assertAlmostEqual(2./3., self.evaluate(result))
def test_invalid_sensitivity(self):
with self.assertRaisesRegexp(
ValueError, r'`recall` must be in the range \[0, 1\].'):
metrics.PrecisionAtRecall(-1)
def test_invalid_num_thresholds(self):
with self.assertRaisesRegexp(ValueError, '`num_thresholds` must be > 0.'):
metrics.PrecisionAtRecall(0.4, num_thresholds=-1)
@test_util.run_all_in_graph_and_eager_modes
class AUCTest(test.TestCase):

View File

@ -0,0 +1,231 @@
path: "tensorflow.keras.metrics.PrecisionAtRecall"
tf_class {
is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>"
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
is_instance: "<type \'object\'>"
member {
name: "activity_regularizer"
mtype: "<type \'property\'>"
}
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "dynamic"
mtype: "<type \'property\'>"
}
member {
name: "inbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "input"
mtype: "<type \'property\'>"
}
member {
name: "input_mask"
mtype: "<type \'property\'>"
}
member {
name: "input_shape"
mtype: "<type \'property\'>"
}
member {
name: "input_spec"
mtype: "<type \'property\'>"
}
member {
name: "losses"
mtype: "<type \'property\'>"
}
member {
name: "metrics"
mtype: "<type \'property\'>"
}
member {
name: "name"
mtype: "<type \'property\'>"
}
member {
name: "name_scope"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "outbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "output"
mtype: "<type \'property\'>"
}
member {
name: "output_mask"
mtype: "<type \'property\'>"
}
member {
name: "output_shape"
mtype: "<type \'property\'>"
}
member {
name: "stateful"
mtype: "<type \'property\'>"
}
member {
name: "submodules"
mtype: "<type \'property\'>"
}
member {
name: "trainable"
mtype: "<type \'property\'>"
}
member {
name: "trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "updates"
mtype: "<type \'property\'>"
}
member {
name: "variables"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], "
}
member_method {
name: "add_loss"
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_metric"
argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "add_update"
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_variable"
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], "
}
member_method {
name: "apply"
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "build"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "call"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None"
}
member_method {
name: "compute_mask"
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "compute_output_shape"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "compute_output_signature"
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "count_params"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_losses_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "reset_states"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "result"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "update_state"
argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "with_name_scope"
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -96,6 +96,10 @@ tf_module {
name: "Precision"
mtype: "<type \'type\'>"
}
member {
name: "PrecisionAtRecall"
mtype: "<type \'type\'>"
}
member {
name: "Recall"
mtype: "<type \'type\'>"

View File

@ -0,0 +1,231 @@
path: "tensorflow.keras.metrics.PrecisionAtRecall"
tf_class {
is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>"
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
is_instance: "<type \'object\'>"
member {
name: "activity_regularizer"
mtype: "<type \'property\'>"
}
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "dynamic"
mtype: "<type \'property\'>"
}
member {
name: "inbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "input"
mtype: "<type \'property\'>"
}
member {
name: "input_mask"
mtype: "<type \'property\'>"
}
member {
name: "input_shape"
mtype: "<type \'property\'>"
}
member {
name: "input_spec"
mtype: "<type \'property\'>"
}
member {
name: "losses"
mtype: "<type \'property\'>"
}
member {
name: "metrics"
mtype: "<type \'property\'>"
}
member {
name: "name"
mtype: "<type \'property\'>"
}
member {
name: "name_scope"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "outbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "output"
mtype: "<type \'property\'>"
}
member {
name: "output_mask"
mtype: "<type \'property\'>"
}
member {
name: "output_shape"
mtype: "<type \'property\'>"
}
member {
name: "stateful"
mtype: "<type \'property\'>"
}
member {
name: "submodules"
mtype: "<type \'property\'>"
}
member {
name: "trainable"
mtype: "<type \'property\'>"
}
member {
name: "trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "updates"
mtype: "<type \'property\'>"
}
member {
name: "variables"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], "
}
member_method {
name: "add_loss"
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_metric"
argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "add_update"
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_variable"
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], "
}
member_method {
name: "apply"
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "build"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "call"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None"
}
member_method {
name: "compute_mask"
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "compute_output_shape"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "compute_output_signature"
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "count_params"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_losses_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "reset_states"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "result"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "update_state"
argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "with_name_scope"
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -96,6 +96,10 @@ tf_module {
name: "Precision"
mtype: "<type \'type\'>"
}
member {
name: "PrecisionAtRecall"
mtype: "<type \'type\'>"
}
member {
name: "Recall"
mtype: "<type \'type\'>"

View File

@ -0,0 +1,231 @@
path: "tensorflow.metrics.PrecisionAtRecall"
tf_class {
is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>"
is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>"
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
is_instance: "<type \'object\'>"
member {
name: "activity_regularizer"
mtype: "<type \'property\'>"
}
member {
name: "dtype"
mtype: "<type \'property\'>"
}
member {
name: "dynamic"
mtype: "<type \'property\'>"
}
member {
name: "inbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "input"
mtype: "<type \'property\'>"
}
member {
name: "input_mask"
mtype: "<type \'property\'>"
}
member {
name: "input_shape"
mtype: "<type \'property\'>"
}
member {
name: "input_spec"
mtype: "<type \'property\'>"
}
member {
name: "losses"
mtype: "<type \'property\'>"
}
member {
name: "metrics"
mtype: "<type \'property\'>"
}
member {
name: "name"
mtype: "<type \'property\'>"
}
member {
name: "name_scope"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "non_trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "outbound_nodes"
mtype: "<type \'property\'>"
}
member {
name: "output"
mtype: "<type \'property\'>"
}
member {
name: "output_mask"
mtype: "<type \'property\'>"
}
member {
name: "output_shape"
mtype: "<type \'property\'>"
}
member {
name: "stateful"
mtype: "<type \'property\'>"
}
member {
name: "submodules"
mtype: "<type \'property\'>"
}
member {
name: "trainable"
mtype: "<type \'property\'>"
}
member {
name: "trainable_variables"
mtype: "<type \'property\'>"
}
member {
name: "trainable_weights"
mtype: "<type \'property\'>"
}
member {
name: "updates"
mtype: "<type \'property\'>"
}
member {
name: "variables"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], "
}
member_method {
name: "add_loss"
argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_metric"
argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "add_update"
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "add_variable"
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], "
}
member_method {
name: "apply"
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
}
member_method {
name: "build"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "call"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None"
}
member_method {
name: "compute_mask"
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "compute_output_shape"
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "compute_output_signature"
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "count_params"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_input_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_losses_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_mask_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_output_shape_at"
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates_for"
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "reset_states"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "result"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "update_state"
argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "with_name_scope"
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -96,6 +96,10 @@ tf_module {
name: "Precision"
mtype: "<type \'type\'>"
}
member {
name: "PrecisionAtRecall"
mtype: "<type \'type\'>"
}
member {
name: "Recall"
mtype: "<type \'type\'>"