diff --git a/tensorflow/python/keras/metrics.py b/tensorflow/python/keras/metrics.py index d853e927d21..c75cf5eb4eb 100644 --- a/tensorflow/python/keras/metrics.py +++ b/tensorflow/python/keras/metrics.py @@ -1556,7 +1556,7 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase): Args: sensitivity: A scalar value in range `[0, 1]`. num_thresholds: (Optional) Defaults to 200. The number of thresholds to - use for matching the given specificity. + use for matching the given sensitivity. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. """ @@ -1573,7 +1573,7 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase): self.true_positives, self.true_positives + self.false_negatives) # Find the index of the threshold where the sensitivity is closest to the - # given specificity. + # requested value. min_index = math_ops.argmin( math_ops.abs(sensitivities - self.value), axis=0) min_index = math_ops.cast(min_index, dtypes.int32) @@ -1592,6 +1592,79 @@ class SpecificityAtSensitivity(SensitivitySpecificityBase): return dict(list(base_config.items()) + list(config.items())) +@keras_export('keras.metrics.PrecisionAtRecall') +class PrecisionAtRecall(SensitivitySpecificityBase): + """Computes the precision at a given recall. + + This metric creates four local variables, `true_positives`, `true_negatives`, + `false_positives` and `false_negatives` that are used to compute the + precision at the given recall. The threshold for the given recall + value is computed and used to evaluate the corresponding precision. + + If `sample_weight` is `None`, weights default to 1. + Use `sample_weight` of 0 to mask values. + + Usage: + + ```python + m = tf.keras.metrics.PrecisionAtRecall(0.8, num_thresholds=1) + m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9]) + print('Final result: ', m.result().numpy()) # Final result: 1.0 + ``` + + Usage with tf.keras API: + + ```python + model = tf.keras.Model(inputs, outputs) + model.compile( + 'sgd', + loss='mse', + metrics=[tf.keras.metrics.PrecisionAtRecall()]) + ``` + """ + + def __init__(self, recall, num_thresholds=200, name=None, dtype=None): + """Creates a `PrecisionAtRecall` instance. + + Args: + recall: A scalar value in range `[0, 1]`. + num_thresholds: (Optional) Defaults to 200. The number of thresholds to + use for matching the given recall. + name: (Optional) string name of the metric instance. + dtype: (Optional) data type of the metric result. + """ + if recall < 0 or recall > 1: + raise ValueError('`recall` must be in the range [0, 1].') + self.recall = recall + self.num_thresholds = num_thresholds + super(PrecisionAtRecall, self).__init__( + value=recall, + num_thresholds=num_thresholds, + name=name, + dtype=dtype) + + def result(self): + # Calculate recall at all the thresholds. + recalls = math_ops.div_no_nan( + self.true_positives, self.true_positives + self.false_negatives) + + # Find the index of the threshold where the recall is closest to the + # requested value. + min_index = math_ops.argmin( + math_ops.abs(recalls - self.value), axis=0) + min_index = math_ops.cast(min_index, dtypes.int32) + + # Compute precision at that index. + return math_ops.div_no_nan( + self.true_positives[min_index], + self.true_positives[min_index] + self.false_positives[min_index]) + + def get_config(self): + config = {'num_thresholds': self.num_thresholds, 'recall': self.recall} + base_config = super(PrecisionAtRecall, self).get_config() + return dict(list(base_config.items()) + list(config.items())) + + @keras_export('keras.metrics.AUC') class AUC(Metric): """Computes the approximate AUC (Area under the curve) via a Riemann sum. diff --git a/tensorflow/python/keras/metrics_confusion_matrix_test.py b/tensorflow/python/keras/metrics_confusion_matrix_test.py index 50179cb4a7e..e7189a13873 100644 --- a/tensorflow/python/keras/metrics_confusion_matrix_test.py +++ b/tensorflow/python/keras/metrics_confusion_matrix_test.py @@ -919,6 +919,103 @@ class SpecificityAtSensitivityTest(test.TestCase, parameterized.TestCase): metrics.SpecificityAtSensitivity(0.4, num_thresholds=-1) +@test_util.run_all_in_graph_and_eager_modes +class PrecisionAtRecallTest(test.TestCase, parameterized.TestCase): + + def test_config(self): + s_obj = metrics.PrecisionAtRecall( + 0.4, num_thresholds=100, name='precision_at_recall_1') + self.assertEqual(s_obj.name, 'precision_at_recall_1') + self.assertLen(s_obj.variables, 4) + self.assertEqual(s_obj.recall, 0.4) + self.assertEqual(s_obj.num_thresholds, 100) + + # Check save and restore config + s_obj2 = metrics.PrecisionAtRecall.from_config(s_obj.get_config()) + self.assertEqual(s_obj2.name, 'precision_at_recall_1') + self.assertLen(s_obj2.variables, 4) + self.assertEqual(s_obj2.recall, 0.4) + self.assertEqual(s_obj2.num_thresholds, 100) + + def test_value_is_idempotent(self): + s_obj = metrics.PrecisionAtRecall(0.7) + y_pred = random_ops.random_uniform((10, 3), + maxval=1, + dtype=dtypes.float32, + seed=1) + y_true = random_ops.random_uniform((10, 3), + maxval=2, + dtype=dtypes.int64, + seed=1) + update_op = s_obj.update_state(y_true, y_pred) + self.evaluate(variables.variables_initializer(s_obj.variables)) + + # Run several updates. + for _ in range(10): + self.evaluate(update_op) + + # Then verify idempotency. + initial_specificity = self.evaluate(s_obj.result()) + for _ in range(10): + self.assertAlmostEqual(initial_specificity, self.evaluate(s_obj.result()), + 1e-3) + + def test_unweighted_all_correct(self): + s_obj = metrics.PrecisionAtRecall(0.7) + inputs = np.random.randint(0, 2, size=(100, 1)) + y_pred = constant_op.constant(inputs, dtype=dtypes.float32) + y_true = constant_op.constant(inputs) + self.evaluate(variables.variables_initializer(s_obj.variables)) + result = s_obj(y_true, y_pred) + self.assertAlmostEqual(1, self.evaluate(result)) + + def test_unweighted_high_recall(self): + s_obj = metrics.PrecisionAtRecall(0.8) + pred_values = [0.0, 0.1, 0.2, 0.3, 0.5, 0.4, 0.5, 0.6, 0.8, 0.9] + label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] + + # For a score between 0.4 and 0.5, we expect 0.8 precision, 0.8 recall. + y_pred = constant_op.constant(pred_values, dtype=dtypes.float32) + y_true = constant_op.constant(label_values) + self.evaluate(variables.variables_initializer(s_obj.variables)) + result = s_obj(y_true, y_pred) + self.assertAlmostEqual(0.8, self.evaluate(result)) + + def test_unweighted_low_recall(self): + s_obj = metrics.PrecisionAtRecall(0.4) + pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.15, 0.25, 0.26, 0.26] + label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] + + y_pred = constant_op.constant(pred_values, dtype=dtypes.float32) + y_true = constant_op.constant(label_values) + self.evaluate(variables.variables_initializer(s_obj.variables)) + result = s_obj(y_true, y_pred) + self.assertAlmostEqual(0.5, self.evaluate(result)) + + @parameterized.parameters([dtypes.bool, dtypes.int32, dtypes.float32]) + def test_weighted(self, label_dtype): + s_obj = metrics.PrecisionAtRecall(0.4) + pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] + label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] + weight_values = [2, 2, 1, 1, 1, 1, 1, 2, 2, 2] + + y_pred = constant_op.constant(pred_values, dtype=dtypes.float32) + y_true = math_ops.cast(label_values, dtype=label_dtype) + weights = constant_op.constant(weight_values) + self.evaluate(variables.variables_initializer(s_obj.variables)) + result = s_obj(y_true, y_pred, sample_weight=weights) + self.assertAlmostEqual(2./3., self.evaluate(result)) + + def test_invalid_sensitivity(self): + with self.assertRaisesRegexp( + ValueError, r'`recall` must be in the range \[0, 1\].'): + metrics.PrecisionAtRecall(-1) + + def test_invalid_num_thresholds(self): + with self.assertRaisesRegexp(ValueError, '`num_thresholds` must be > 0.'): + metrics.PrecisionAtRecall(0.4, num_thresholds=-1) + + @test_util.run_all_in_graph_and_eager_modes class AUCTest(test.TestCase): diff --git a/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt b/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt new file mode 100644 index 00000000000..6e294ba5ef5 --- /dev/null +++ b/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.-precision-at-recall.pbtxt @@ -0,0 +1,231 @@ +path: "tensorflow.keras.metrics.PrecisionAtRecall" +tf_class { + is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>" + is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>" + is_instance: "<class \'tensorflow.python.module.module.Module\'>" + is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>" + is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>" + is_instance: "<type \'object\'>" + member { + name: "activity_regularizer" + mtype: "<type \'property\'>" + } + member { + name: "dtype" + mtype: "<type \'property\'>" + } + member { + name: "dynamic" + mtype: "<type \'property\'>" + } + member { + name: "inbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "input" + mtype: "<type \'property\'>" + } + member { + name: "input_mask" + mtype: "<type \'property\'>" + } + member { + name: "input_shape" + mtype: "<type \'property\'>" + } + member { + name: "input_spec" + mtype: "<type \'property\'>" + } + member { + name: "losses" + mtype: "<type \'property\'>" + } + member { + name: "metrics" + mtype: "<type \'property\'>" + } + member { + name: "name" + mtype: "<type \'property\'>" + } + member { + name: "name_scope" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "outbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "output" + mtype: "<type \'property\'>" + } + member { + name: "output_mask" + mtype: "<type \'property\'>" + } + member { + name: "output_shape" + mtype: "<type \'property\'>" + } + member { + name: "stateful" + mtype: "<type \'property\'>" + } + member { + name: "submodules" + mtype: "<type \'property\'>" + } + member { + name: "trainable" + mtype: "<type \'property\'>" + } + member { + name: "trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "updates" + mtype: "<type \'property\'>" + } + member { + name: "variables" + mtype: "<type \'property\'>" + } + member { + name: "weights" + mtype: "<type \'property\'>" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "result" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "update_state" + argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.pbtxt b/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.pbtxt index 3f7fe4a2f40..c4481a9233e 100644 --- a/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.pbtxt +++ b/tensorflow/tools/api/golden/v1/tensorflow.keras.metrics.pbtxt @@ -96,6 +96,10 @@ tf_module { name: "Precision" mtype: "<type \'type\'>" } + member { + name: "PrecisionAtRecall" + mtype: "<type \'type\'>" + } member { name: "Recall" mtype: "<type \'type\'>" diff --git a/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt new file mode 100644 index 00000000000..6e294ba5ef5 --- /dev/null +++ b/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.-precision-at-recall.pbtxt @@ -0,0 +1,231 @@ +path: "tensorflow.keras.metrics.PrecisionAtRecall" +tf_class { + is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>" + is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>" + is_instance: "<class \'tensorflow.python.module.module.Module\'>" + is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>" + is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>" + is_instance: "<type \'object\'>" + member { + name: "activity_regularizer" + mtype: "<type \'property\'>" + } + member { + name: "dtype" + mtype: "<type \'property\'>" + } + member { + name: "dynamic" + mtype: "<type \'property\'>" + } + member { + name: "inbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "input" + mtype: "<type \'property\'>" + } + member { + name: "input_mask" + mtype: "<type \'property\'>" + } + member { + name: "input_shape" + mtype: "<type \'property\'>" + } + member { + name: "input_spec" + mtype: "<type \'property\'>" + } + member { + name: "losses" + mtype: "<type \'property\'>" + } + member { + name: "metrics" + mtype: "<type \'property\'>" + } + member { + name: "name" + mtype: "<type \'property\'>" + } + member { + name: "name_scope" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "outbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "output" + mtype: "<type \'property\'>" + } + member { + name: "output_mask" + mtype: "<type \'property\'>" + } + member { + name: "output_shape" + mtype: "<type \'property\'>" + } + member { + name: "stateful" + mtype: "<type \'property\'>" + } + member { + name: "submodules" + mtype: "<type \'property\'>" + } + member { + name: "trainable" + mtype: "<type \'property\'>" + } + member { + name: "trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "updates" + mtype: "<type \'property\'>" + } + member { + name: "variables" + mtype: "<type \'property\'>" + } + member { + name: "weights" + mtype: "<type \'property\'>" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "result" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "update_state" + argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.pbtxt index 71e89765cb8..def1eb51bde 100644 --- a/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.pbtxt +++ b/tensorflow/tools/api/golden/v2/tensorflow.keras.metrics.pbtxt @@ -96,6 +96,10 @@ tf_module { name: "Precision" mtype: "<type \'type\'>" } + member { + name: "PrecisionAtRecall" + mtype: "<type \'type\'>" + } member { name: "Recall" mtype: "<type \'type\'>" diff --git a/tensorflow/tools/api/golden/v2/tensorflow.metrics.-precision-at-recall.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.metrics.-precision-at-recall.pbtxt new file mode 100644 index 00000000000..1ba7673f021 --- /dev/null +++ b/tensorflow/tools/api/golden/v2/tensorflow.metrics.-precision-at-recall.pbtxt @@ -0,0 +1,231 @@ +path: "tensorflow.metrics.PrecisionAtRecall" +tf_class { + is_instance: "<class \'tensorflow.python.keras.metrics.PrecisionAtRecall\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.SensitivitySpecificityBase\'>" + is_instance: "<class \'tensorflow.python.keras.metrics.Metric\'>" + is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>" + is_instance: "<class \'tensorflow.python.module.module.Module\'>" + is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>" + is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>" + is_instance: "<type \'object\'>" + member { + name: "activity_regularizer" + mtype: "<type \'property\'>" + } + member { + name: "dtype" + mtype: "<type \'property\'>" + } + member { + name: "dynamic" + mtype: "<type \'property\'>" + } + member { + name: "inbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "input" + mtype: "<type \'property\'>" + } + member { + name: "input_mask" + mtype: "<type \'property\'>" + } + member { + name: "input_shape" + mtype: "<type \'property\'>" + } + member { + name: "input_spec" + mtype: "<type \'property\'>" + } + member { + name: "losses" + mtype: "<type \'property\'>" + } + member { + name: "metrics" + mtype: "<type \'property\'>" + } + member { + name: "name" + mtype: "<type \'property\'>" + } + member { + name: "name_scope" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "non_trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "outbound_nodes" + mtype: "<type \'property\'>" + } + member { + name: "output" + mtype: "<type \'property\'>" + } + member { + name: "output_mask" + mtype: "<type \'property\'>" + } + member { + name: "output_shape" + mtype: "<type \'property\'>" + } + member { + name: "stateful" + mtype: "<type \'property\'>" + } + member { + name: "submodules" + mtype: "<type \'property\'>" + } + member { + name: "trainable" + mtype: "<type \'property\'>" + } + member { + name: "trainable_variables" + mtype: "<type \'property\'>" + } + member { + name: "trainable_weights" + mtype: "<type \'property\'>" + } + member { + name: "updates" + mtype: "<type \'property\'>" + } + member { + name: "variables" + mtype: "<type \'property\'>" + } + member { + name: "weights" + mtype: "<type \'property\'>" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'recall\', \'num_thresholds\', \'name\', \'dtype\'], varargs=None, keywords=None, defaults=[\'200\', \'None\', \'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'aggregation\', \'synchronization\', \'initializer\', \'dtype\'], varargs=None, keywords=None, defaults=[\'()\', \'VariableAggregation.SUM\', \'VariableSynchronization.ON_READ\', \'None\', \'None\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "result" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "update_state" + argspec: "args=[\'self\', \'y_true\', \'y_pred\', \'sample_weight\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v2/tensorflow.metrics.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.metrics.pbtxt index 4ae997c6bd4..5bd57dd7618 100644 --- a/tensorflow/tools/api/golden/v2/tensorflow.metrics.pbtxt +++ b/tensorflow/tools/api/golden/v2/tensorflow.metrics.pbtxt @@ -96,6 +96,10 @@ tf_module { name: "Precision" mtype: "<type \'type\'>" } + member { + name: "PrecisionAtRecall" + mtype: "<type \'type\'>" + } member { name: "Recall" mtype: "<type \'type\'>"