Stop using deprecated enum tf.lite.Optimize.OPTIMIZE_FOR_SIZE and some other clean up
PiperOrigin-RevId: 313688439 Change-Id: Ice2c0d9aefc57681c20d11dade772251a9eab84e
This commit is contained in:
parent
347fe6ece4
commit
5c9dd54540
@ -61,6 +61,9 @@
|
|||||||
" \u003ctd\u003e\n",
|
" \u003ctd\u003e\n",
|
||||||
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
||||||
" \u003c/td\u003e\n",
|
" \u003c/td\u003e\n",
|
||||||
|
" \u003ctd\u003e\n",
|
||||||
|
" \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
|
||||||
|
" \u003c/td\u003e\n",
|
||||||
"\u003c/table\u003e"
|
"\u003c/table\u003e"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -113,13 +116,7 @@
|
|||||||
"import logging\n",
|
"import logging\n",
|
||||||
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"try:\n",
|
"import tensorflow as tf\n",
|
||||||
" # %tensorflow_version only exists in Colab.\n",
|
|
||||||
" import tensorflow.compat.v2 as tf\n",
|
|
||||||
"except Exception:\n",
|
|
||||||
" pass\n",
|
|
||||||
"tf.enable_v2_behavior()\n",
|
|
||||||
"\n",
|
|
||||||
"from tensorflow import keras\n",
|
"from tensorflow import keras\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import pathlib"
|
"import pathlib"
|
||||||
@ -173,12 +170,12 @@
|
|||||||
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n",
|
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n",
|
||||||
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
||||||
" keras.layers.Flatten(),\n",
|
" keras.layers.Flatten(),\n",
|
||||||
" keras.layers.Dense(10, activation=tf.nn.softmax)\n",
|
" keras.layers.Dense(10)\n",
|
||||||
"])\n",
|
"])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Train the digit classification model\n",
|
"# Train the digit classification model\n",
|
||||||
"model.compile(optimizer='adam',\n",
|
"model.compile(optimizer='adam',\n",
|
||||||
" loss='sparse_categorical_crossentropy',\n",
|
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
||||||
" metrics=['accuracy'])\n",
|
" metrics=['accuracy'])\n",
|
||||||
"model.fit(\n",
|
"model.fit(\n",
|
||||||
" train_images,\n",
|
" train_images,\n",
|
||||||
@ -597,28 +594,11 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"Detailed documentation on the TFLite GPU delegate and how to use it in your application can be found [here](https://www.tensorflow.org/lite/performance/gpu_advanced?source=post_page---------------------------)"
|
"Detailed documentation on the TFLite GPU delegate and how to use it in your application can be found [here](https://www.tensorflow.org/lite/performance/gpu_advanced?source=post_page---------------------------)"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 0,
|
|
||||||
"metadata": {
|
|
||||||
"colab": {},
|
|
||||||
"colab_type": "code",
|
|
||||||
"id": "BeUSdwKVixvk"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
""
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"last_runtime": {
|
|
||||||
"build_target": "//learning/brain/python/client:colab_notebook_py3",
|
|
||||||
"kind": "private"
|
|
||||||
},
|
|
||||||
"name": "post_training-float16-quant.ipynb",
|
"name": "post_training-float16-quant.ipynb",
|
||||||
"private_outputs": true,
|
"private_outputs": true,
|
||||||
"provenance": [],
|
"provenance": [],
|
||||||
|
@ -61,6 +61,9 @@
|
|||||||
" \u003ctd\u003e\n",
|
" \u003ctd\u003e\n",
|
||||||
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
||||||
" \u003c/td\u003e\n",
|
" \u003c/td\u003e\n",
|
||||||
|
" \u003ctd\u003e\n",
|
||||||
|
" \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
|
||||||
|
" \u003c/td\u003e\n",
|
||||||
"\u003c/table\u003e"
|
"\u003c/table\u003e"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -114,13 +117,7 @@
|
|||||||
"import logging\n",
|
"import logging\n",
|
||||||
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"try:\n",
|
"import tensorflow as tf\n",
|
||||||
" # %tensorflow_version only exists in Colab.\n",
|
|
||||||
" import tensorflow.compat.v2 as tf\n",
|
|
||||||
"except Exception:\n",
|
|
||||||
" pass\n",
|
|
||||||
"tf.enable_v2_behavior()\n",
|
|
||||||
"\n",
|
|
||||||
"from tensorflow import keras\n",
|
"from tensorflow import keras\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import pathlib"
|
"import pathlib"
|
||||||
@ -158,15 +155,15 @@
|
|||||||
"model = keras.Sequential([\n",
|
"model = keras.Sequential([\n",
|
||||||
" keras.layers.InputLayer(input_shape=(28, 28)),\n",
|
" keras.layers.InputLayer(input_shape=(28, 28)),\n",
|
||||||
" keras.layers.Reshape(target_shape=(28, 28, 1)),\n",
|
" keras.layers.Reshape(target_shape=(28, 28, 1)),\n",
|
||||||
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n",
|
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),\n",
|
||||||
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
||||||
" keras.layers.Flatten(),\n",
|
" keras.layers.Flatten(),\n",
|
||||||
" keras.layers.Dense(10, activation=tf.nn.softmax)\n",
|
" keras.layers.Dense(10)\n",
|
||||||
"])\n",
|
"])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Train the digit classification model\n",
|
"# Train the digit classification model\n",
|
||||||
"model.compile(optimizer='adam',\n",
|
"model.compile(optimizer='adam',\n",
|
||||||
" loss='sparse_categorical_crossentropy',\n",
|
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
||||||
" metrics=['accuracy'])\n",
|
" metrics=['accuracy'])\n",
|
||||||
"model.fit(\n",
|
"model.fit(\n",
|
||||||
" train_images,\n",
|
" train_images,\n",
|
||||||
@ -277,7 +274,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]"
|
"converter.optimizations = [tf.lite.Optimize.DEFAULT]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -655,10 +652,6 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"last_runtime": {
|
|
||||||
"build_target": "//learning/brain/python/client:colab_notebook_py3",
|
|
||||||
"kind": "private"
|
|
||||||
},
|
|
||||||
"name": "post_training_integer_quant.ipynb",
|
"name": "post_training_integer_quant.ipynb",
|
||||||
"private_outputs": true,
|
"private_outputs": true,
|
||||||
"provenance": [],
|
"provenance": [],
|
||||||
|
@ -61,6 +61,9 @@
|
|||||||
" \u003ctd\u003e\n",
|
" \u003ctd\u003e\n",
|
||||||
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
||||||
" \u003c/td\u003e\n",
|
" \u003c/td\u003e\n",
|
||||||
|
" \u003ctd\u003e\n",
|
||||||
|
" \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
|
||||||
|
" \u003c/td\u003e\n",
|
||||||
"\u003c/table\u003e"
|
"\u003c/table\u003e"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -134,13 +137,7 @@
|
|||||||
"import logging\n",
|
"import logging\n",
|
||||||
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
"logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"try:\n",
|
"import tensorflow as tf\n",
|
||||||
" # %tensorflow_version only exists in Colab.\n",
|
|
||||||
" import tensorflow.compat.v2 as tf\n",
|
|
||||||
"except Exception:\n",
|
|
||||||
" pass\n",
|
|
||||||
"tf.enable_v2_behavior()\n",
|
|
||||||
"\n",
|
|
||||||
"from tensorflow import keras\n",
|
"from tensorflow import keras\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import pathlib"
|
"import pathlib"
|
||||||
@ -181,12 +178,12 @@
|
|||||||
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n",
|
" keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n",
|
||||||
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
" keras.layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
||||||
" keras.layers.Flatten(),\n",
|
" keras.layers.Flatten(),\n",
|
||||||
" keras.layers.Dense(10, activation=tf.nn.softmax)\n",
|
" keras.layers.Dense(10)\n",
|
||||||
"])\n",
|
"])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Train the digit classification model\n",
|
"# Train the digit classification model\n",
|
||||||
"model.compile(optimizer='adam',\n",
|
"model.compile(optimizer='adam',\n",
|
||||||
" loss='sparse_categorical_crossentropy',\n",
|
" loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
||||||
" metrics=['accuracy'])\n",
|
" metrics=['accuracy'])\n",
|
||||||
"model.fit(\n",
|
"model.fit(\n",
|
||||||
" train_images,\n",
|
" train_images,\n",
|
||||||
@ -620,10 +617,6 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"collapsed_sections": [],
|
"collapsed_sections": [],
|
||||||
"last_runtime": {
|
|
||||||
"build_target": "//learning/brain/python/client:colab_notebook_py3",
|
|
||||||
"kind": "private"
|
|
||||||
},
|
|
||||||
"name": "post_training_quant.ipynb",
|
"name": "post_training_quant.ipynb",
|
||||||
"private_outputs": true,
|
"private_outputs": true,
|
||||||
"provenance": [],
|
"provenance": [],
|
||||||
|
Loading…
Reference in New Issue
Block a user