diff --git a/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb b/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb index cf589a2b968..ef08902865e 100644 --- a/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb +++ b/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb @@ -61,6 +61,9 @@ " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n", " \u003c/td\u003e\n", + " \u003ctd\u003e\n", + " \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n", + " \u003c/td\u003e\n", "\u003c/table\u003e" ] }, @@ -113,13 +116,7 @@ "import logging\n", "logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n", "\n", - "try:\n", - " # %tensorflow_version only exists in Colab.\n", - " import tensorflow.compat.v2 as tf\n", - "except Exception:\n", - " pass\n", - "tf.enable_v2_behavior()\n", - "\n", + "import tensorflow as tf\n", "from tensorflow import keras\n", "import numpy as np\n", "import pathlib" @@ -173,12 +170,12 @@ " keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n", " keras.layers.MaxPooling2D(pool_size=(2, 2)),\n", " keras.layers.Flatten(),\n", - " keras.layers.Dense(10, activation=tf.nn.softmax)\n", + " keras.layers.Dense(10)\n", "])\n", "\n", "# Train the digit classification model\n", "model.compile(optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", + " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", "model.fit(\n", " train_images,\n", @@ -597,28 +594,11 @@ "\n", "Detailed documentation on the TFLite GPU delegate and how to use it in your application can be found [here](https://www.tensorflow.org/lite/performance/gpu_advanced?source=post_page---------------------------)" ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "BeUSdwKVixvk" - }, - "outputs": [], - "source": [ - "" - ] } ], "metadata": { "colab": { "collapsed_sections": [], - "last_runtime": { - "build_target": "//learning/brain/python/client:colab_notebook_py3", - "kind": "private" - }, "name": "post_training-float16-quant.ipynb", "private_outputs": true, "provenance": [], diff --git a/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb b/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb index fddee15bc1d..ad461f56d6f 100644 --- a/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb +++ b/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb @@ -61,6 +61,9 @@ " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n", " \u003c/td\u003e\n", + " \u003ctd\u003e\n", + " \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_integer_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n", + " \u003c/td\u003e\n", "\u003c/table\u003e" ] }, @@ -114,13 +117,7 @@ "import logging\n", "logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n", "\n", - "try:\n", - " # %tensorflow_version only exists in Colab.\n", - " import tensorflow.compat.v2 as tf\n", - "except Exception:\n", - " pass\n", - "tf.enable_v2_behavior()\n", - "\n", + "import tensorflow as tf\n", "from tensorflow import keras\n", "import numpy as np\n", "import pathlib" @@ -158,15 +155,15 @@ "model = keras.Sequential([\n", " keras.layers.InputLayer(input_shape=(28, 28)),\n", " keras.layers.Reshape(target_shape=(28, 28, 1)),\n", - " keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n", + " keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),\n", " keras.layers.MaxPooling2D(pool_size=(2, 2)),\n", " keras.layers.Flatten(),\n", - " keras.layers.Dense(10, activation=tf.nn.softmax)\n", + " keras.layers.Dense(10)\n", "])\n", "\n", "# Train the digit classification model\n", "model.compile(optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", + " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", "model.fit(\n", " train_images,\n", @@ -277,7 +274,7 @@ }, "outputs": [], "source": [ - "converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]" + "converter.optimizations = [tf.lite.Optimize.DEFAULT]" ] }, { @@ -655,10 +652,6 @@ "metadata": { "colab": { "collapsed_sections": [], - "last_runtime": { - "build_target": "//learning/brain/python/client:colab_notebook_py3", - "kind": "private" - }, "name": "post_training_integer_quant.ipynb", "private_outputs": true, "provenance": [], diff --git a/tensorflow/lite/g3doc/performance/post_training_quant.ipynb b/tensorflow/lite/g3doc/performance/post_training_quant.ipynb index d6edb656d0e..201ccf5bdc3 100644 --- a/tensorflow/lite/g3doc/performance/post_training_quant.ipynb +++ b/tensorflow/lite/g3doc/performance/post_training_quant.ipynb @@ -61,6 +61,9 @@ " \u003ctd\u003e\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n", " \u003c/td\u003e\n", + " \u003ctd\u003e\n", + " \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/tensorflow/lite/g3doc/performance/post_training_quant.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n", + " \u003c/td\u003e\n", "\u003c/table\u003e" ] }, @@ -134,13 +137,7 @@ "import logging\n", "logging.getLogger(\"tensorflow\").setLevel(logging.DEBUG)\n", "\n", - "try:\n", - " # %tensorflow_version only exists in Colab.\n", - " import tensorflow.compat.v2 as tf\n", - "except Exception:\n", - " pass\n", - "tf.enable_v2_behavior()\n", - "\n", + "import tensorflow as tf\n", "from tensorflow import keras\n", "import numpy as np\n", "import pathlib" @@ -181,12 +178,12 @@ " keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),\n", " keras.layers.MaxPooling2D(pool_size=(2, 2)),\n", " keras.layers.Flatten(),\n", - " keras.layers.Dense(10, activation=tf.nn.softmax)\n", + " keras.layers.Dense(10)\n", "])\n", "\n", "# Train the digit classification model\n", "model.compile(optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", + " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", "model.fit(\n", " train_images,\n", @@ -620,10 +617,6 @@ "metadata": { "colab": { "collapsed_sections": [], - "last_runtime": { - "build_target": "//learning/brain/python/client:colab_notebook_py3", - "kind": "private" - }, "name": "post_training_quant.ipynb", "private_outputs": true, "provenance": [],