parallel implementation of the resize nearest neighbor op

This commit is contained in:
leslie-fang-intel 2019-11-13 10:24:12 +08:00
parent 7089aaa395
commit 126a6f7879
3 changed files with 46 additions and 27 deletions

View File

@ -19,7 +19,6 @@ limitations under the License.
#include "tensorflow/core/kernels/resize_nearest_neighbor_op.h"
#include <memory>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
@ -28,6 +27,8 @@ limitations under the License.
#include "tensorflow/core/kernels/image_resizer_state.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/util/work_sharder.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
namespace tensorflow {
@ -68,13 +69,13 @@ class ResizeNearestNeighborOp : public OpKernel {
/*half_pixe_centers=*/true,
/*align_corners=*/true>()(
context->eigen_device<Device>(), input_data, st.height_scale,
st.width_scale, output_data);
st.width_scale, output_data, context);
} else {
status = functor::ResizeNearestNeighbor<Device, T,
/*half_pixe_centers=*/true,
/*align_corners=*/false>()(
context->eigen_device<Device>(), input_data, st.height_scale,
st.width_scale, output_data);
st.width_scale, output_data, context);
}
} else {
if (align_corners_) {
@ -82,13 +83,13 @@ class ResizeNearestNeighborOp : public OpKernel {
/*half_pixe_centers=*/false,
/*align_corners=*/true>()(
context->eigen_device<Device>(), input_data, st.height_scale,
st.width_scale, output_data);
st.width_scale, output_data, context);
} else {
status = functor::ResizeNearestNeighbor<Device, T,
/*half_pixe_centers=*/false,
/*align_corners=*/false>()(
context->eigen_device<Device>(), input_data, st.height_scale,
st.width_scale, output_data);
st.width_scale, output_data, context);
}
}
if (!status) {
@ -130,20 +131,25 @@ struct BoolToScaler<false> {
namespace functor {
template <typename T, bool half_pixel_centers, bool align_corners>
struct ResizeNearestNeighbor<CPUDevice, T, half_pixel_centers, align_corners> {
bool operator()(const CPUDevice& d, typename TTypes<T, 4>::ConstTensor input,
const float height_scale, const float width_scale,
typename TTypes<T, 4>::Tensor output) {
typename BoolToScaler<half_pixel_centers>::Scaler scaler;
bool ParallelExecute(const CPUDevice& d,
typename TTypes<T, 4>::ConstTensor input,
const float height_scale, const float width_scale,
typename TTypes<T, 4>::Tensor output,
OpKernelContext* c) {
const DeviceBase::CpuWorkerThreads& worker_threads =
*(c->device()->tensorflow_cpu_worker_threads());
const Eigen::Index batch_size = input.dimension(0);
const Eigen::Index in_height = input.dimension(1);
const Eigen::Index in_width = input.dimension(2);
const Eigen::Index channels = input.dimension(3);
const Eigen::Index out_height = output.dimension(1);
const Eigen::Index out_width = output.dimension(2);
for (Eigen::Index b = 0; b < batch_size; ++b) {
for (Eigen::Index y = 0; y < out_height; ++y) {
typename BoolToScaler<half_pixel_centers>::Scaler scaler;
auto ParallelResize = [&](Eigen::Index start, Eigen::Index end) {
for (Eigen::Index b = start; b < end; ++b) {
Eigen::Index x = b % out_width;
Eigen::Index y = (b / out_width) % out_height;
Eigen::Index bs = (b / out_width) / out_height;
Eigen::Index in_y = std::min(
(align_corners)
? static_cast<Eigen::Index>(roundf(scaler(y, height_scale)))
@ -152,21 +158,30 @@ struct ResizeNearestNeighbor<CPUDevice, T, half_pixel_centers, align_corners> {
if (half_pixel_centers) {
in_y = std::max(static_cast<Eigen::Index>(0), in_y);
}
for (Eigen::Index x = 0; x < out_width; ++x) {
Eigen::Index in_x = std::min(
(align_corners)
? static_cast<Eigen::Index>(roundf(scaler(x, width_scale)))
: static_cast<Eigen::Index>(floorf(scaler(x, width_scale))),
in_width - 1);
if (half_pixel_centers) {
in_x = std::max(static_cast<Eigen::Index>(0), in_x);
}
std::copy_n(&input(b, in_y, in_x, 0), channels, &output(b, y, x, 0));
Eigen::Index in_x = std::min(
(align_corners)
? static_cast<Eigen::Index>(roundf(scaler(x, width_scale)))
: static_cast<Eigen::Index>(floorf(scaler(x, width_scale))),
in_width - 1);
if (half_pixel_centers) {
in_x = std::max(static_cast<Eigen::Index>(0), in_x);
}
std::copy_n(&input(bs, in_y, in_x, 0), channels, &output(bs, y, x, 0));
}
}
};
Eigen::Index N = batch_size * out_height * out_width;
Shard(worker_threads.num_threads, worker_threads.workers, N, 1000.0,
ParallelResize); // TODO: Come up with a good cost estimate:
// 3500:26~27fps, 1000:27~28fps.
return true;
}
bool operator()(const CPUDevice& d, typename TTypes<T, 4>::ConstTensor input,
const float height_scale, const float width_scale,
typename TTypes<T, 4>::Tensor output,
OpKernelContext* context) {
return ParallelExecute(d, input, height_scale, width_scale, output,
context);
}
};
} // namespace functor

View File

@ -16,6 +16,7 @@ limitations under the License.
#ifndef TENSORFLOW_CORE_KERNELS_RESIZE_NEAREST_NEIGHBOR_OP_H_
#define TENSORFLOW_CORE_KERNELS_RESIZE_NEAREST_NEIGHBOR_OP_H_
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/platform/types.h"
@ -27,7 +28,8 @@ template <typename Device, typename T, bool half_pixel_centers,
struct ResizeNearestNeighbor {
bool operator()(const Device& d, typename TTypes<T, 4>::ConstTensor input,
const float height_scale, const float width_scale,
typename TTypes<T, 4>::Tensor output);
typename TTypes<T, 4>::Tensor output,
OpKernelContext* context = NULL);
};
template <typename Device, typename T, bool half_pixel_centers,

View File

@ -49,9 +49,11 @@ static Graph* BM_Resize(const char* algorithm, int batches, int width,
BENCHMARK(BM_Resize_##ALGORITHM##_##DEVICE##_##B##_##W##_##H)
BM_ResizeDev(cpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(gpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(cpu, ResizeBilinear, 10, 499, 499);
#if GOOGLE_CUDA
BM_ResizeDev(gpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(gpu, ResizeBilinear, 10, 499, 499);
#endif
} // namespace tensorflow