Experimental C API and framework build target for the benchmark tool
PiperOrigin-RevId: 279883195 Change-Id: I3212b33b2be4e97cf6f50e9fb25756988d5fad7e
This commit is contained in:
parent
7d8e271251
commit
7089aaa395
configure.py
tensorflow/lite/tools/benchmark/experimental
@ -60,7 +60,8 @@ NCCL_LIB_PATHS = [
|
||||
APPLE_BAZEL_FILES = [
|
||||
'tensorflow/lite/experimental/ios/BUILD',
|
||||
'tensorflow/lite/experimental/objc/BUILD',
|
||||
'tensorflow/lite/experimental/swift/BUILD'
|
||||
'tensorflow/lite/experimental/swift/BUILD',
|
||||
'tensorflow/lite/tools/benchmark/experimental/ios/BUILD'
|
||||
]
|
||||
|
||||
# List of files to move when building for iOS.
|
||||
|
30
tensorflow/lite/tools/benchmark/experimental/c/BUILD
Normal file
30
tensorflow/lite/tools/benchmark/experimental/c/BUILD
Normal file
@ -0,0 +1,30 @@
|
||||
load("//tensorflow/lite:build_def.bzl", "tflite_copts")
|
||||
|
||||
package(
|
||||
default_visibility = ["benchmark"],
|
||||
licenses = ["notice"], # Apache 2.0
|
||||
)
|
||||
|
||||
package_group(
|
||||
name = "benchmark",
|
||||
packages = [
|
||||
"//tensorflow/lite/tools/benchmark/...",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "benchmark_c_api",
|
||||
srcs = ["benchmark_c_api.cc"],
|
||||
hdrs = [
|
||||
"benchmark_c_api.h",
|
||||
"c_api_types.h",
|
||||
],
|
||||
copts = tflite_copts(),
|
||||
visibility = [
|
||||
"benchmark",
|
||||
],
|
||||
deps = [
|
||||
"//tensorflow/core:stats_calculator_portable",
|
||||
"//tensorflow/lite/tools/benchmark:benchmark_tflite_model_lib",
|
||||
],
|
||||
)
|
@ -0,0 +1,175 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/tools/benchmark/experimental/c/benchmark_c_api.h"
|
||||
|
||||
#include "tensorflow/core/util/stats_calculator.h"
|
||||
#include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkResults type.
|
||||
// -----------------------------------------------------------------------------
|
||||
struct TfLiteBenchmarkResults {
|
||||
const tflite::benchmark::BenchmarkResults* results;
|
||||
};
|
||||
|
||||
// Converts the given int64_t stat into a TfLiteBenchmarkInt64Stat struct.
|
||||
TfLiteBenchmarkInt64Stat ConvertStat(const tensorflow::Stat<int64_t>& stat) {
|
||||
return {
|
||||
stat.empty(), stat.first(), stat.newest(), stat.max(),
|
||||
stat.min(), stat.count(), stat.sum(), stat.squared_sum(),
|
||||
stat.all_same(), stat.avg(), stat.std_deviation(),
|
||||
};
|
||||
}
|
||||
|
||||
TfLiteBenchmarkInt64Stat TfLiteBenchmarkResultsGetInferenceTimeMicroseconds(
|
||||
const TfLiteBenchmarkResults* results) {
|
||||
return ConvertStat(results->results->inference_time_us());
|
||||
}
|
||||
|
||||
TfLiteBenchmarkInt64Stat TfLiteBenchmarkResultsGetWarmupTimeMicroseconds(
|
||||
const TfLiteBenchmarkResults* results) {
|
||||
return ConvertStat(results->results->warmup_time_us());
|
||||
}
|
||||
|
||||
int64_t TfLiteBenchmarkResultsGetStartupLatencyMicroseconds(
|
||||
const TfLiteBenchmarkResults* results) {
|
||||
return results->results->startup_latency_us();
|
||||
}
|
||||
|
||||
uint64_t TfLiteBenchmarkResultsGetInputBytes(
|
||||
const TfLiteBenchmarkResults* results) {
|
||||
return results->results->input_bytes();
|
||||
}
|
||||
|
||||
double TfLiteBenchmarkResultsGetThroughputMbPerSecond(
|
||||
const TfLiteBenchmarkResults* results) {
|
||||
return results->results->throughput_MB_per_second();
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkListener type.
|
||||
// -----------------------------------------------------------------------------
|
||||
class BenchmarkListenerAdapter : public tflite::benchmark::BenchmarkListener {
|
||||
public:
|
||||
void OnBenchmarkStart(
|
||||
const tflite::benchmark::BenchmarkParams& params) override {
|
||||
if (on_benchmark_start_fn_ != nullptr) {
|
||||
on_benchmark_start_fn_();
|
||||
}
|
||||
}
|
||||
|
||||
void OnSingleRunStart(tflite::benchmark::RunType runType) override {
|
||||
if (on_single_run_start_fn_ != nullptr) {
|
||||
on_single_run_start_fn_(runType == tflite::benchmark::WARMUP
|
||||
? TfLiteBenchmarkWarmup
|
||||
: TfLiteBenchmarkRegular);
|
||||
}
|
||||
}
|
||||
|
||||
void OnSingleRunEnd() override {
|
||||
if (on_single_run_end_fn_ != nullptr) {
|
||||
on_single_run_end_fn_();
|
||||
}
|
||||
}
|
||||
|
||||
void OnBenchmarkEnd(
|
||||
const tflite::benchmark::BenchmarkResults& results) override {
|
||||
if (on_benchmark_end_fn_ != nullptr) {
|
||||
TfLiteBenchmarkResults* wrapper = new TfLiteBenchmarkResults{&results};
|
||||
on_benchmark_end_fn_(wrapper);
|
||||
delete wrapper;
|
||||
}
|
||||
}
|
||||
|
||||
// Function pointers set by the TfLiteBenchmarkListenerSetCallbacks call.
|
||||
// Only non-null callbacks will be actually called.
|
||||
void (*on_benchmark_start_fn_)();
|
||||
void (*on_single_run_start_fn_)(TfLiteBenchmarkRunType runType);
|
||||
void (*on_single_run_end_fn_)();
|
||||
void (*on_benchmark_end_fn_)(TfLiteBenchmarkResults* results);
|
||||
};
|
||||
|
||||
struct TfLiteBenchmarkListener {
|
||||
std::unique_ptr<BenchmarkListenerAdapter> adapter;
|
||||
};
|
||||
|
||||
TfLiteBenchmarkListener* TfLiteBenchmarkListenerCreate() {
|
||||
std::unique_ptr<BenchmarkListenerAdapter> adapter(
|
||||
new BenchmarkListenerAdapter());
|
||||
return new TfLiteBenchmarkListener{std::move(adapter)};
|
||||
}
|
||||
|
||||
void TfLiteBenchmarkListenerDelete(TfLiteBenchmarkListener* listener) {
|
||||
delete listener;
|
||||
}
|
||||
|
||||
void TfLiteBenchmarkListenerSetCallbacks(
|
||||
TfLiteBenchmarkListener* listener, void (*on_benchmark_start_fn)(),
|
||||
void (*on_single_run_start_fn)(TfLiteBenchmarkRunType runType),
|
||||
void (*on_single_run_end_fn)(),
|
||||
void (*on_benchmark_end_fn)(TfLiteBenchmarkResults* results)) {
|
||||
listener->adapter->on_benchmark_start_fn_ = on_benchmark_start_fn;
|
||||
listener->adapter->on_single_run_start_fn_ = on_single_run_start_fn;
|
||||
listener->adapter->on_single_run_end_fn_ = on_single_run_end_fn;
|
||||
listener->adapter->on_benchmark_end_fn_ = on_benchmark_end_fn;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkTfLiteModel type.
|
||||
// -----------------------------------------------------------------------------
|
||||
struct TfLiteBenchmarkTfLiteModel {
|
||||
std::unique_ptr<tflite::benchmark::BenchmarkTfLiteModel> benchmark_model;
|
||||
};
|
||||
|
||||
TfLiteBenchmarkTfLiteModel* TfLiteBenchmarkTfLiteModelCreate() {
|
||||
std::unique_ptr<tflite::benchmark::BenchmarkTfLiteModel> benchmark_model(
|
||||
new tflite::benchmark::BenchmarkTfLiteModel());
|
||||
return new TfLiteBenchmarkTfLiteModel{std::move(benchmark_model)};
|
||||
}
|
||||
|
||||
void TfLiteBenchmarkTfLiteModelDelete(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model) {
|
||||
delete benchmark_model;
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteBenchmarkTfLiteModelInit(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model) {
|
||||
return benchmark_model->benchmark_model->Init();
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteBenchmarkTfLiteModelRun(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model) {
|
||||
return benchmark_model->benchmark_model->Run();
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteBenchmarkTfLiteModelRunWithArgs(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model, int argc, char** argv) {
|
||||
return benchmark_model->benchmark_model->Run(argc, argv);
|
||||
}
|
||||
|
||||
void TfLiteBenchmarkTfLiteModelAddListener(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model,
|
||||
const TfLiteBenchmarkListener* listener) {
|
||||
return benchmark_model->benchmark_model->AddListener(listener->adapter.get());
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
131
tensorflow/lite/tools/benchmark/experimental/c/benchmark_c_api.h
Normal file
131
tensorflow/lite/tools/benchmark/experimental/c/benchmark_c_api.h
Normal file
@ -0,0 +1,131 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_C_BENCHMARK_C_API_H_
|
||||
#define TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_C_BENCHMARK_C_API_H_
|
||||
|
||||
#include "c_api_types.h"
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Experimental C APIs for the benchmark tool, mainly intended to be used for
|
||||
// building a standalone TensorFlow Lite benchmark framework for iOS. This
|
||||
// header only has a minimal dependency to the C API types, which can be
|
||||
// included in the framework itself.
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
typedef enum {
|
||||
TfLiteBenchmarkWarmup,
|
||||
TfLiteBenchmarkRegular,
|
||||
} TfLiteBenchmarkRunType;
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tensorflow::Stat<int64_t> type.
|
||||
// -----------------------------------------------------------------------------
|
||||
typedef struct TfLiteBenchmarkInt64Stat {
|
||||
bool empty;
|
||||
int64_t first;
|
||||
int64_t newest;
|
||||
int64_t max;
|
||||
int64_t min;
|
||||
int64_t count;
|
||||
int64_t sum;
|
||||
double squared_sum;
|
||||
bool all_same;
|
||||
double avg;
|
||||
int64_t std_deviation;
|
||||
} TfLiteBenchmarkInt64Stat;
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkResults type.
|
||||
// -----------------------------------------------------------------------------
|
||||
typedef struct TfLiteBenchmarkResults TfLiteBenchmarkResults;
|
||||
|
||||
extern TfLiteBenchmarkInt64Stat
|
||||
TfLiteBenchmarkResultsGetInferenceTimeMicroseconds(
|
||||
const TfLiteBenchmarkResults* results);
|
||||
|
||||
extern TfLiteBenchmarkInt64Stat TfLiteBenchmarkResultsGetWarmupTimeMicroseconds(
|
||||
const TfLiteBenchmarkResults* results);
|
||||
|
||||
extern int64_t TfLiteBenchmarkResultsGetStartupLatencyMicroseconds(
|
||||
const TfLiteBenchmarkResults* results);
|
||||
|
||||
extern uint64_t TfLiteBenchmarkResultsGetInputBytes(
|
||||
const TfLiteBenchmarkResults* results);
|
||||
|
||||
extern double TfLiteBenchmarkResultsGetThroughputMbPerSecond(
|
||||
const TfLiteBenchmarkResults* results);
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkListener type.
|
||||
// -----------------------------------------------------------------------------
|
||||
typedef struct TfLiteBenchmarkListener TfLiteBenchmarkListener;
|
||||
|
||||
extern TfLiteBenchmarkListener* TfLiteBenchmarkListenerCreate();
|
||||
|
||||
extern void TfLiteBenchmarkListenerDelete(TfLiteBenchmarkListener* listener);
|
||||
|
||||
// Sets the listener callbacks. Only non-null callback functions will be called
|
||||
// when the following events occur.
|
||||
//
|
||||
// - on_benchmark_start: Called before the (outer) inference loop begins. Note
|
||||
// that this is called *after* the interpreter has been initialized, but
|
||||
// *before* any warmup runs have been executed.
|
||||
// - on_single_run_start: Called before a single (inner) inference call starts.
|
||||
// - on_single_run_end: Called before a single (inner) inference call ends.
|
||||
// - on_benchmark_end: Called after the (outer) inference loop ends.
|
||||
//
|
||||
// In case of `on_benchmark_end` callback, the passed in `results` pointer is
|
||||
// only valid during the callback function execution, and will be destroyed
|
||||
// afterwards.
|
||||
extern void TfLiteBenchmarkListenerSetCallbacks(
|
||||
TfLiteBenchmarkListener* listener, void (*on_benchmark_start_fn)(),
|
||||
void (*on_single_run_start_fn)(TfLiteBenchmarkRunType runType),
|
||||
void (*on_single_run_end_fn)(),
|
||||
void (*on_benchmark_end_fn)(TfLiteBenchmarkResults* results));
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// C APIs corresponding to tflite::benchmark::BenchmarkTfLiteModel type.
|
||||
// -----------------------------------------------------------------------------
|
||||
typedef struct TfLiteBenchmarkTfLiteModel TfLiteBenchmarkTfLiteModel;
|
||||
|
||||
// TODO(b/144321502): Support BenchmarkParams.
|
||||
extern TfLiteBenchmarkTfLiteModel* TfLiteBenchmarkTfLiteModelCreate();
|
||||
|
||||
extern void TfLiteBenchmarkTfLiteModelDelete(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model);
|
||||
|
||||
extern TfLiteStatus TfLiteBenchmarkTfLiteModelInit(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model);
|
||||
|
||||
extern TfLiteStatus TfLiteBenchmarkTfLiteModelRun(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model);
|
||||
|
||||
extern TfLiteStatus TfLiteBenchmarkTfLiteModelRunWithArgs(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model, int argc, char** argv);
|
||||
|
||||
extern void TfLiteBenchmarkTfLiteModelAddListener(
|
||||
TfLiteBenchmarkTfLiteModel* benchmark_model,
|
||||
const TfLiteBenchmarkListener* listener);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif // TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_C_BENCHMARK_C_API_H_
|
629
tensorflow/lite/tools/benchmark/experimental/c/c_api_types.h
Normal file
629
tensorflow/lite/tools/benchmark/experimental/c/c_api_types.h
Normal file
@ -0,0 +1,629 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
// This file defines a C API for implementing operations in tflite.
|
||||
// These operations can be defined using c++ but the interface between
|
||||
// the interpreter and the operations are C.
|
||||
//
|
||||
// Summary of abstractions
|
||||
// TF_LITE_ENSURE - Self-sufficient error checking
|
||||
// TfLiteStatus - Status reporting
|
||||
// TfLiteIntArray - stores tensor shapes (dims),
|
||||
// TfLiteContext - allows an op to access the tensors
|
||||
// TfLiteTensor - tensor (a multidimensional array)
|
||||
// TfLiteNode - a single node or operation
|
||||
// TfLiteRegistration - the implementation of a conceptual operation.
|
||||
//
|
||||
// Some abstractions in this file are created and managed by Interpreter.
|
||||
#ifndef TENSORFLOW_LITE_C_C_API_INTERNAL_H_
|
||||
#define TENSORFLOW_LITE_C_C_API_INTERNAL_H_
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
typedef enum { kTfLiteOk = 0, kTfLiteError = 1 } TfLiteStatus;
|
||||
|
||||
// The list of external context types known to TF Lite. This list exists solely
|
||||
// to avoid conflicts and to ensure ops can share the external contexts they
|
||||
// need. Access to the external contexts is controled by one of the
|
||||
// corresponding support files.
|
||||
typedef enum {
|
||||
kTfLiteEigenContext = 0, // include eigen_support.h to use.
|
||||
kTfLiteGemmLowpContext = 1, // include gemm_support.h to use.
|
||||
kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support.
|
||||
kTfLiteCpuBackendContext = 3, // include cpu_backend_support.h to use.
|
||||
kTfLiteMaxExternalContexts = 4
|
||||
} TfLiteExternalContextType;
|
||||
|
||||
// Forward declare so dependent structs and methods can reference these types
|
||||
// prior to the struct definitions.
|
||||
struct TfLiteContext;
|
||||
struct TfLiteDelegate;
|
||||
struct TfLiteRegistration;
|
||||
|
||||
// An external context is a collection of information unrelated to the TF Lite
|
||||
// framework, but useful to a subset of the ops. TF Lite knows very little
|
||||
// about about the actual contexts, but it keeps a list of them, and is able to
|
||||
// refresh them if configurations like the number of recommended threads
|
||||
// change.
|
||||
typedef struct {
|
||||
TfLiteExternalContextType type;
|
||||
TfLiteStatus (*Refresh)(struct TfLiteContext* context);
|
||||
} TfLiteExternalContext;
|
||||
|
||||
#define kOptionalTensor (-1)
|
||||
|
||||
// Fixed size list of integers. Used for dimensions and inputs/outputs tensor
|
||||
// indices
|
||||
typedef struct {
|
||||
int size;
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1
|
||||
int data[0];
|
||||
#else
|
||||
int data[];
|
||||
#endif
|
||||
} TfLiteIntArray;
|
||||
|
||||
// Given the size (number of elements) in a TfLiteIntArray, calculate its size
|
||||
// in bytes.
|
||||
int TfLiteIntArrayGetSizeInBytes(int size);
|
||||
|
||||
// Create a array of a given `size` (uninitialized entries).
|
||||
// This returns a pointer, that you must free using TfLiteIntArrayFree().
|
||||
TfLiteIntArray* TfLiteIntArrayCreate(int size);
|
||||
|
||||
// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise.
|
||||
int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b);
|
||||
|
||||
// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise.
|
||||
int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
|
||||
const int b_data[]);
|
||||
|
||||
// Create a copy of an array passed as `src`.
|
||||
// You are expected to free memory with TfLiteIntArrayFree
|
||||
TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src);
|
||||
|
||||
// Free memory of array `a`.
|
||||
void TfLiteIntArrayFree(TfLiteIntArray* a);
|
||||
|
||||
// Fixed size list of floats. Used for per-channel quantization.
|
||||
typedef struct {
|
||||
int size;
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1
|
||||
float data[0];
|
||||
#else
|
||||
float data[];
|
||||
#endif
|
||||
} TfLiteFloatArray;
|
||||
|
||||
// Given the size (number of elements) in a TfLiteFloatArray, calculate its size
|
||||
// in bytes.
|
||||
int TfLiteFloatArrayGetSizeInBytes(int size);
|
||||
|
||||
// Create a array of a given `size` (uninitialized entries).
|
||||
// This returns a pointer, that you must free using TfLiteFloatArrayFree().
|
||||
TfLiteFloatArray* TfLiteFloatArrayCreate(int size);
|
||||
|
||||
// Free memory of array `a`.
|
||||
void TfLiteFloatArrayFree(TfLiteFloatArray* a);
|
||||
|
||||
// Since we must not depend on any libraries, define a minimal subset of
|
||||
// error macros while avoiding names that have pre-conceived meanings like
|
||||
// assert and check.
|
||||
|
||||
// Check whether value is true, and if not return kTfLiteError from
|
||||
// the current function (and report the error string msg).
|
||||
#define TF_LITE_ENSURE_MSG(context, value, msg) \
|
||||
do { \
|
||||
if (!(value)) { \
|
||||
(context)->ReportError((context), __FILE__ " " msg); \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Check whether the value `a` is true, and if not return kTfLiteError from
|
||||
// the current function, while also reporting the location of the error.
|
||||
#define TF_LITE_ENSURE(context, a) \
|
||||
do { \
|
||||
if (!(a)) { \
|
||||
(context)->ReportError((context), "%s:%d %s was not true.", __FILE__, \
|
||||
__LINE__, #a); \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define TF_LITE_ENSURE_STATUS(a) \
|
||||
do { \
|
||||
if ((a) != kTfLiteOk) { \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Check whether the value `a == b` is true, and if not return kTfLiteError from
|
||||
// the current function, while also reporting the location of the error.
|
||||
// `a` and `b` may be evaluated more than once, so no side effects or
|
||||
// extremely expensive computations should be done.
|
||||
#define TF_LITE_ENSURE_EQ(context, a, b) \
|
||||
do { \
|
||||
if ((a) != (b)) { \
|
||||
(context)->ReportError((context), "%s:%d %s != %s (%d != %d)", __FILE__, \
|
||||
__LINE__, #a, #b, (a), (b)); \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \
|
||||
do { \
|
||||
if ((a) != (b)) { \
|
||||
(context)->ReportError((context), "%s:%d %s != %s (%s != %s)", __FILE__, \
|
||||
__LINE__, #a, #b, TfLiteTypeGetName(a), \
|
||||
TfLiteTypeGetName(b)); \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define TF_LITE_ENSURE_OK(context, status) \
|
||||
do { \
|
||||
if ((status) != kTfLiteOk) { \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Single-precision complex data type compatible with the C99 definition.
|
||||
typedef struct {
|
||||
float re, im; // real and imaginary parts, respectively.
|
||||
} TfLiteComplex64;
|
||||
|
||||
// Half precision data type compatible with the C99 definition.
|
||||
typedef struct {
|
||||
uint16_t data;
|
||||
} TfLiteFloat16;
|
||||
|
||||
// Types supported by tensor
|
||||
typedef enum {
|
||||
kTfLiteNoType = 0,
|
||||
kTfLiteFloat32 = 1,
|
||||
kTfLiteInt32 = 2,
|
||||
kTfLiteUInt8 = 3,
|
||||
kTfLiteInt64 = 4,
|
||||
kTfLiteString = 5,
|
||||
kTfLiteBool = 6,
|
||||
kTfLiteInt16 = 7,
|
||||
kTfLiteComplex64 = 8,
|
||||
kTfLiteInt8 = 9,
|
||||
kTfLiteFloat16 = 10,
|
||||
} TfLiteType;
|
||||
|
||||
// Return the name of a given type, for error reporting purposes.
|
||||
const char* TfLiteTypeGetName(TfLiteType type);
|
||||
|
||||
// SupportedQuantizationTypes.
|
||||
typedef enum {
|
||||
// No quantization.
|
||||
kTfLiteNoQuantization = 0,
|
||||
// Affine quantization (with support for per-channel quantization).
|
||||
// Corresponds to TfLiteAffineQuantization.
|
||||
kTfLiteAffineQuantization = 1,
|
||||
} TfLiteQuantizationType;
|
||||
|
||||
// Structure specifying the quantization used by the tensor, if-any.
|
||||
typedef struct {
|
||||
// The type of quantization held by params.
|
||||
TfLiteQuantizationType type;
|
||||
// Holds a reference to one of the quantization param structures specified
|
||||
// below.
|
||||
void* params;
|
||||
} TfLiteQuantization;
|
||||
|
||||
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
|
||||
// If per-layer quantization is specified this field will still be populated in
|
||||
// addition to TfLiteAffineQuantization.
|
||||
// Parameters for asymmetric quantization. Quantized values can be converted
|
||||
// back to float using:
|
||||
// real_value = scale * (quantized_value - zero_point)
|
||||
typedef struct {
|
||||
float scale;
|
||||
int32_t zero_point;
|
||||
} TfLiteQuantizationParams;
|
||||
|
||||
// Parameters for asymmetric quantization across a dimension (i.e per output
|
||||
// channel quantization).
|
||||
// quantized_dimension specifies which dimension the scales and zero_points
|
||||
// correspond to.
|
||||
// For a particular value in quantized_dimension, quantized values can be
|
||||
// converted back to float using:
|
||||
// real_value = scale * (quantized_value - zero_point)
|
||||
typedef struct {
|
||||
TfLiteFloatArray* scale;
|
||||
TfLiteIntArray* zero_point;
|
||||
int32_t quantized_dimension;
|
||||
} TfLiteAffineQuantization;
|
||||
|
||||
/* A union of pointers that points to memory for a given tensor. */
|
||||
typedef union {
|
||||
/* Do not access these members directly, if possible, use
|
||||
* GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other
|
||||
* members are deprecated. */
|
||||
int32_t* i32;
|
||||
int64_t* i64;
|
||||
float* f;
|
||||
TfLiteFloat16* f16;
|
||||
char* raw;
|
||||
const char* raw_const;
|
||||
uint8_t* uint8;
|
||||
bool* b;
|
||||
int16_t* i16;
|
||||
TfLiteComplex64* c64;
|
||||
int8_t* int8;
|
||||
/* Only use this member. */
|
||||
void* data;
|
||||
} TfLitePtrUnion;
|
||||
|
||||
// Memory allocation strategies. kTfLiteMmapRo is for read-only memory-mapped
|
||||
// data (or data externally allocated). kTfLiteArenaRw is arena allocated
|
||||
// data. kTfLiteDynamic is for tensors that are allocated during evaluation.
|
||||
typedef enum {
|
||||
kTfLiteMemNone = 0,
|
||||
kTfLiteMmapRo,
|
||||
kTfLiteArenaRw,
|
||||
kTfLiteArenaRwPersistent,
|
||||
kTfLiteDynamic,
|
||||
} TfLiteAllocationType;
|
||||
|
||||
// The delegates should use zero or positive integers to represent handles.
|
||||
// -1 is reserved from unallocated status.
|
||||
typedef int TfLiteBufferHandle;
|
||||
enum {
|
||||
kTfLiteNullBufferHandle = -1,
|
||||
};
|
||||
|
||||
// An tensor in the interpreter system which is a wrapper around a buffer of
|
||||
// data including a dimensionality (or NULL if not currently defined).
|
||||
typedef struct {
|
||||
// The data type specification for data stored in `data`. This affects
|
||||
// what member of `data` union should be used.
|
||||
TfLiteType type;
|
||||
// A union of data pointers. The appropriate type should be used for a typed
|
||||
// tensor based on `type`.
|
||||
TfLitePtrUnion data;
|
||||
// A pointer to a structure representing the dimensionality interpretation
|
||||
// that the buffer should have. NOTE: the product of elements of `dims`
|
||||
// and the element datatype size should be equal to `bytes` below.
|
||||
TfLiteIntArray* dims;
|
||||
// Quantization information.
|
||||
TfLiteQuantizationParams params;
|
||||
// How memory is mapped
|
||||
// kTfLiteMmapRo: Memory mapped read only.
|
||||
// i.e. weights
|
||||
// kTfLiteArenaRw: Arena allocated read write memory
|
||||
// (i.e. temporaries, outputs).
|
||||
TfLiteAllocationType allocation_type;
|
||||
// The number of bytes required to store the data of this Tensor. I.e.
|
||||
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
|
||||
// type is kTfLiteFloat32 and dims = {3, 2} then
|
||||
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
|
||||
size_t bytes;
|
||||
|
||||
// An opaque pointer to a tflite::MMapAllocation
|
||||
const void* allocation;
|
||||
|
||||
// Null-terminated name of this tensor.
|
||||
const char* name;
|
||||
|
||||
// The delegate which knows how to handle `buffer_handle`.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
struct TfLiteDelegate* delegate;
|
||||
|
||||
// An integer buffer handle that can be handled by `delegate`.
|
||||
// The value is valid only when delegate is not null.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
TfLiteBufferHandle buffer_handle;
|
||||
|
||||
// If the delegate uses its own buffer (e.g. GPU memory), the delegate is
|
||||
// responsible to set data_is_stale to true.
|
||||
// `delegate->CopyFromBufferHandle` can be called to copy the data from
|
||||
// delegate buffer.
|
||||
// WARNING: This is an // experimental interface that is subject to change.
|
||||
bool data_is_stale;
|
||||
|
||||
// True if the tensor is a variable.
|
||||
bool is_variable;
|
||||
|
||||
// Quantization information. Replaces params field above.
|
||||
TfLiteQuantization quantization;
|
||||
} TfLiteTensor;
|
||||
|
||||
// Free data memory of tensor `t`.
|
||||
void TfLiteTensorDataFree(TfLiteTensor* t);
|
||||
|
||||
// Free quantization data.
|
||||
void TfLiteQuantizationFree(TfLiteQuantization* quantization);
|
||||
|
||||
// Free memory of tensor `t`.
|
||||
void TfLiteTensorFree(TfLiteTensor* t);
|
||||
|
||||
// Set all of a tensor's fields (and free any previously allocated data).
|
||||
void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
||||
TfLiteQuantizationParams quantization, char* buffer,
|
||||
size_t size, TfLiteAllocationType allocation_type,
|
||||
const void* allocation, bool is_variable,
|
||||
TfLiteTensor* tensor);
|
||||
|
||||
// Resize the allocated data of a (dynamic) tensor. Tensors with allocation
|
||||
// types other than kTfLiteDynamic will be ignored.
|
||||
void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor);
|
||||
|
||||
// A structure representing an instance of a node.
|
||||
// This structure only exhibits the inputs, outputs and user defined data, not
|
||||
// other features like the type.
|
||||
typedef struct {
|
||||
// Inputs to this node expressed as indices into the simulator's tensors.
|
||||
TfLiteIntArray* inputs;
|
||||
|
||||
// Outputs to this node expressed as indices into the simulator's tensors.
|
||||
TfLiteIntArray* outputs;
|
||||
|
||||
// intermediate tensors to this node expressed as indices into the simulator's
|
||||
// tensors.
|
||||
TfLiteIntArray* intermediates;
|
||||
|
||||
// Temporary tensors uses during the computations. This usually contains no
|
||||
// tensors, but ops are allowed to change that if they need scratch space of
|
||||
// any sort.
|
||||
TfLiteIntArray* temporaries;
|
||||
|
||||
// Opaque data provided by the node implementer through `Registration.init`.
|
||||
void* user_data;
|
||||
|
||||
// Opaque data provided to the node if the node is a builtin. This is usually
|
||||
// a structure defined in builtin_op_data.h
|
||||
void* builtin_data;
|
||||
|
||||
// Custom initial data. This is the opaque data provided in the flatbuffer.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
const void* custom_initial_data;
|
||||
int custom_initial_data_size;
|
||||
|
||||
// The pointer to the delegate. This is non-null only when the node is
|
||||
// created by calling `interpreter.ModifyGraphWithDelegate`.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
struct TfLiteDelegate* delegate;
|
||||
} TfLiteNode;
|
||||
|
||||
typedef struct TfLiteContext {
|
||||
// Number of tensors in the context.
|
||||
size_t tensors_size;
|
||||
|
||||
// The execution plan contains a list of the node indices in execution
|
||||
// order. execution_plan->size is the current number of nodes. And,
|
||||
// execution_plan->data[0] is the first node that needs to be run.
|
||||
// TfLiteDelegates can traverse the current execution plan by iterating
|
||||
// through each member of this array and using GetNodeAndRegistration() to
|
||||
// access details about a node. i.e.
|
||||
// TfLiteIntArray* execution_plan;
|
||||
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan));
|
||||
// for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) {
|
||||
// int node_index = execution_plan->data[exec_index];
|
||||
// TfLiteNode* node;
|
||||
// TfLiteRegistration* reg;
|
||||
// context->GetNodeAndRegistration(context, node_index, &node, ®);
|
||||
// }
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context,
|
||||
TfLiteIntArray** execution_plan);
|
||||
|
||||
// An array of tensors in the interpreter context (of length `tensors_size`)
|
||||
TfLiteTensor* tensors;
|
||||
|
||||
// opaque full context ptr (an opaque c++ data structure)
|
||||
void* impl_;
|
||||
|
||||
// Request memory pointer be resized. Updates dimensions on the tensor.
|
||||
// NOTE: ResizeTensor takes ownership of newSize.
|
||||
TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor,
|
||||
TfLiteIntArray* new_size);
|
||||
// Request that an error be reported with format string msg.
|
||||
void (*ReportError)(struct TfLiteContext*, const char* msg, ...);
|
||||
|
||||
// Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If
|
||||
// non-null, the value pointed to by `first_new_tensor_index` will be set to
|
||||
// the index of the first new tensor.
|
||||
TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add,
|
||||
int* first_new_tensor_index);
|
||||
|
||||
// Get a Tensor node by node_index.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
TfLiteStatus (*GetNodeAndRegistration)(
|
||||
struct TfLiteContext*, int node_index, TfLiteNode** node,
|
||||
struct TfLiteRegistration** registration);
|
||||
|
||||
// Replace ops with one or more stub delegate operations. This function
|
||||
// does not take ownership of `nodes_to_replace`.
|
||||
TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)(
|
||||
struct TfLiteContext*, struct TfLiteRegistration registration,
|
||||
const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate);
|
||||
|
||||
// Number of threads that are recommended to subsystems like gemmlowp and
|
||||
// eigen.
|
||||
int recommended_num_threads;
|
||||
|
||||
// Access external contexts by type.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*,
|
||||
TfLiteExternalContextType);
|
||||
// Set the value of a external context. Does not take ownership of the
|
||||
// pointer.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType,
|
||||
TfLiteExternalContext*);
|
||||
|
||||
// Flag for allowing float16 precision for FP32 calculation.
|
||||
// default: false.
|
||||
// WARNING: This is an experimental API and subject to change.
|
||||
bool allow_fp32_relax_to_fp16;
|
||||
|
||||
// Pointer to the op-level profiler, if set; nullptr otherwise.
|
||||
void* profiler;
|
||||
} TfLiteContext;
|
||||
|
||||
typedef struct TfLiteRegistration {
|
||||
// Initializes the op from serialized data.
|
||||
// If a built-in op:
|
||||
// `buffer` is the op's params data (TfLiteLSTMParams*).
|
||||
// `length` is zero.
|
||||
// If custom op:
|
||||
// `buffer` is the op's `custom_options`.
|
||||
// `length` is the size of the buffer.
|
||||
//
|
||||
// Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer
|
||||
// or an instance of a struct).
|
||||
//
|
||||
// The returned pointer will be stored with the node in the `user_data` field,
|
||||
// accessible within prepare and invoke functions below.
|
||||
// NOTE: if the data is already in the desired format, simply implement this
|
||||
// function to return `nullptr` and implement the free function to be a no-op.
|
||||
void* (*init)(TfLiteContext* context, const char* buffer, size_t length);
|
||||
|
||||
// The pointer `buffer` is the data previously returned by an init invocation.
|
||||
void (*free)(TfLiteContext* context, void* buffer);
|
||||
|
||||
// prepare is called when the inputs this node depends on have been resized.
|
||||
// context->ResizeTensor() can be called to request output tensors to be
|
||||
// resized.
|
||||
//
|
||||
// Returns kTfLiteOk on success.
|
||||
TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node);
|
||||
|
||||
// Execute the node (should read node->inputs and output to node->outputs).
|
||||
// Returns kTfLiteOk on success.
|
||||
TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node);
|
||||
|
||||
// profiling_string is called during summarization of profiling information
|
||||
// in order to group executions together. Providing a value here will cause a
|
||||
// given op to appear multiple times is the profiling report. This is
|
||||
// particularly useful for custom ops that can perform significantly
|
||||
// different calculations depending on their `user-data`.
|
||||
const char* (*profiling_string)(const TfLiteContext* context,
|
||||
const TfLiteNode* node);
|
||||
|
||||
// Builtin codes. If this kernel refers to a builtin this is the code
|
||||
// of the builtin. This is so we can do marshaling to other frameworks like
|
||||
// NN API.
|
||||
// Note: It is the responsibility of the registration binder to set this
|
||||
// properly.
|
||||
int32_t builtin_code;
|
||||
|
||||
// Custom op name. If the op is a builtin, this will be null.
|
||||
// Note: It is the responsibility of the registration binder to set this
|
||||
// properly.
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
const char* custom_name;
|
||||
|
||||
// The version of the op.
|
||||
// Note: It is the responsibility of the registration binder to set this
|
||||
// properly.
|
||||
int version;
|
||||
} TfLiteRegistration;
|
||||
|
||||
// The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the
|
||||
// values should be 1, 2, 4, 8, ...etc.
|
||||
typedef enum {
|
||||
kTfLiteDelegateFlagsNone = 0,
|
||||
// The flag is set if the delegate can handle dynamic sized tensors.
|
||||
// For example, the output shape of a `Resize` op with non-constant shape
|
||||
// can only be inferred when the op is invoked.
|
||||
// In this case, the Delegate is responsible for calling
|
||||
// `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling
|
||||
// `ResizeTensor` when invoking the op.
|
||||
//
|
||||
// If the delegate isn't capable to handle dynamic tensors, this flag need
|
||||
// to be set to false.
|
||||
kTfLiteDelegateFlagsAllowDynamicTensors = 1
|
||||
} TfLiteDelegateFlags;
|
||||
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
typedef struct TfLiteDelegate {
|
||||
// Data that delegate needs to identify itself. This data is owned by the
|
||||
// delegate. The delegate is owned in the user code, so the delegate is
|
||||
// responsible for doing this when it is destroyed.
|
||||
void* data_;
|
||||
|
||||
// Invoked by ModifyGraphWithDelegate. This prepare is called, giving the
|
||||
// delegate a view of the current graph through TfLiteContext*. It typically
|
||||
// will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels()
|
||||
// to ask the TensorFlow lite runtime to create macro-nodes to represent
|
||||
// delegated subgraphs of the original graph.
|
||||
TfLiteStatus (*Prepare)(TfLiteContext* context,
|
||||
struct TfLiteDelegate* delegate);
|
||||
|
||||
// Copy the data from delegate buffer handle into raw memory of the given
|
||||
// 'tensor'. This cannot be null. The delegate is allowed to allocate the raw
|
||||
// bytes as long as it follows the rules for kTfLiteDynamic tensors.
|
||||
TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context,
|
||||
struct TfLiteDelegate* delegate,
|
||||
TfLiteBufferHandle buffer_handle,
|
||||
TfLiteTensor* tensor);
|
||||
|
||||
// Copy the data from raw memory of the given 'tensor' to delegate buffer
|
||||
// handle. This can be null if the delegate doesn't use its own buffer.
|
||||
TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context,
|
||||
struct TfLiteDelegate* delegate,
|
||||
TfLiteBufferHandle buffer_handle,
|
||||
TfLiteTensor* tensor);
|
||||
|
||||
// Free the Delegate Buffer Handle. Note: This only frees the handle, but
|
||||
// this doesn't release the underlying resource (e.g. textures). The
|
||||
// resources are either owned by application layer or the delegate.
|
||||
// This can be null if the delegate doesn't use its own buffer.
|
||||
void (*FreeBufferHandle)(TfLiteContext* context,
|
||||
struct TfLiteDelegate* delegate,
|
||||
TfLiteBufferHandle* handle);
|
||||
|
||||
// Bitmask flags. See the comments in `TfLiteDelegateFlags`.
|
||||
int64_t flags;
|
||||
} TfLiteDelegate;
|
||||
|
||||
// Build a 'null' delegate, with all the fields properly set to their default
|
||||
// values.
|
||||
TfLiteDelegate TfLiteDelegateCreate();
|
||||
|
||||
// WARNING: This is an experimental interface that is subject to change.
|
||||
//
|
||||
// Currently, TfLiteDelegateParams has to be allocated in a way that it's
|
||||
// trivially destructable. It will be stored as `builtin_data` field in
|
||||
// `TfLiteNode` of the delegate node.
|
||||
//
|
||||
// See also the `CreateDelegateParams` function in `interpreter.cc` details.
|
||||
typedef struct {
|
||||
TfLiteDelegate* delegate;
|
||||
TfLiteIntArray* nodes_to_replace;
|
||||
TfLiteIntArray* input_tensors;
|
||||
TfLiteIntArray* output_tensors;
|
||||
} TfLiteDelegateParams;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif // __cplusplus
|
||||
#endif // TENSORFLOW_LITE_C_C_API_INTERNAL_H_
|
22
tensorflow/lite/tools/benchmark/experimental/ios/BUILD.apple
Normal file
22
tensorflow/lite/tools/benchmark/experimental/ios/BUILD.apple
Normal file
@ -0,0 +1,22 @@
|
||||
load("//tensorflow/lite/experimental/ios:ios.bzl", "TFL_MINIMUM_OS_VERSION")
|
||||
load("@build_bazel_rules_apple//apple:ios.bzl", "ios_static_framework")
|
||||
|
||||
package(
|
||||
licenses = ["notice"], # Apache 2.0
|
||||
)
|
||||
|
||||
# Main target for the benchmark tool iOS framework.
|
||||
# bazel build --config=ios_fat -c opt //tensorflow/lite/tools/benchmark/experimental/ios:TensorFlowLiteBenchmarkC_framework
|
||||
ios_static_framework(
|
||||
name = "TensorFlowLiteBenchmarkC_framework",
|
||||
hdrs = [
|
||||
"//tensorflow/lite/tools/benchmark:logging.h",
|
||||
"//tensorflow/lite/tools/benchmark/experimental/c:benchmark_c_api.h",
|
||||
"//tensorflow/lite/tools/benchmark/experimental/c:c_api_types.h",
|
||||
],
|
||||
bundle_name = "TensorFlowLiteBenchmarkC",
|
||||
minimum_os_version = TFL_MINIMUM_OS_VERSION,
|
||||
deps = [
|
||||
"//tensorflow/lite/tools/benchmark/experimental/c:benchmark_c_api",
|
||||
],
|
||||
)
|
Loading…
Reference in New Issue
Block a user