mirror of
https://github.com/hannobraun/Fornjot
synced 2025-05-11 21:38:31 +00:00
Move Circle
into fj_core::geometry
This commit is contained in:
parent
6c45865e24
commit
64f290010b
@ -1,6 +1,8 @@
|
|||||||
use fj_math::{Circle, Point};
|
use fj_math::Point;
|
||||||
|
|
||||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
use crate::geometry::{
|
||||||
|
curves::circle::Circle, traits::GenPolyline, CurveBoundary, Tolerance,
|
||||||
|
};
|
||||||
|
|
||||||
/// # Approximate a circle
|
/// # Approximate a circle
|
||||||
///
|
///
|
||||||
|
@ -1,9 +1,12 @@
|
|||||||
use std::collections::BTreeMap;
|
use std::collections::BTreeMap;
|
||||||
|
|
||||||
use fj_math::{Circle, Line, Point};
|
use fj_math::{Line, Point};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
geometry::{CurveBoundary, Geometry, Path, SurfaceGeom, Tolerance},
|
geometry::{
|
||||||
|
curves::circle::Circle, CurveBoundary, Geometry, Path, SurfaceGeom,
|
||||||
|
Tolerance,
|
||||||
|
},
|
||||||
storage::Handle,
|
storage::Handle,
|
||||||
topology::{Curve, Surface},
|
topology::{Curve, Surface},
|
||||||
};
|
};
|
||||||
@ -190,14 +193,14 @@ impl CurveApproxCache {
|
|||||||
mod tests {
|
mod tests {
|
||||||
use std::f64::consts::TAU;
|
use std::f64::consts::TAU;
|
||||||
|
|
||||||
use fj_math::{Circle, Point, Vector};
|
use fj_math::{Point, Vector};
|
||||||
use pretty_assertions::assert_eq;
|
use pretty_assertions::assert_eq;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
algorithms::approx::{
|
algorithms::approx::{
|
||||||
circle::approx_circle, curve::approx_curve, ApproxPoint,
|
circle::approx_circle, curve::approx_curve, ApproxPoint,
|
||||||
},
|
},
|
||||||
geometry::{CurveBoundary, Path, SurfaceGeom},
|
geometry::{curves::circle::Circle, CurveBoundary, Path, SurfaceGeom},
|
||||||
operations::build::BuildSurface,
|
operations::build::BuildSurface,
|
||||||
topology::Surface,
|
topology::Surface,
|
||||||
Core,
|
Core,
|
||||||
|
@ -2,10 +2,197 @@
|
|||||||
|
|
||||||
use std::iter;
|
use std::iter;
|
||||||
|
|
||||||
use fj_math::{Circle, Point, Scalar, Sign};
|
use approx::AbsDiffEq;
|
||||||
|
use fj_math::{Aabb, Point, Scalar, Sign, Transform, Vector};
|
||||||
|
|
||||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
||||||
|
|
||||||
|
/// An n-dimensional circle
|
||||||
|
///
|
||||||
|
/// The dimensionality of the circle is defined by the const generic `D`
|
||||||
|
/// parameter.
|
||||||
|
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
||||||
|
pub struct Circle<const D: usize> {
|
||||||
|
center: Point<D>,
|
||||||
|
a: Vector<D>,
|
||||||
|
b: Vector<D>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<const D: usize> Circle<D> {
|
||||||
|
/// Construct a circle
|
||||||
|
///
|
||||||
|
/// # Panics
|
||||||
|
///
|
||||||
|
/// Panics, if any of the following requirements are not met:
|
||||||
|
///
|
||||||
|
/// - The circle radius (defined by the length of `a` and `b`) must not be
|
||||||
|
/// zero.
|
||||||
|
/// - `a` and `b` must be of equal length.
|
||||||
|
/// - `a` and `b` must be perpendicular to each other.
|
||||||
|
pub fn new(
|
||||||
|
center: impl Into<Point<D>>,
|
||||||
|
a: impl Into<Vector<D>>,
|
||||||
|
b: impl Into<Vector<D>>,
|
||||||
|
) -> Self {
|
||||||
|
let center = center.into();
|
||||||
|
let a = a.into();
|
||||||
|
let b = b.into();
|
||||||
|
|
||||||
|
assert_eq!(
|
||||||
|
a.magnitude(),
|
||||||
|
b.magnitude(),
|
||||||
|
"`a` and `b` must be of equal length"
|
||||||
|
);
|
||||||
|
assert_ne!(
|
||||||
|
a.magnitude(),
|
||||||
|
Scalar::ZERO,
|
||||||
|
"circle radius must not be zero"
|
||||||
|
);
|
||||||
|
// Requiring the vector to be *precisely* perpendicular is not
|
||||||
|
// practical, because of numerical inaccuracy. This epsilon value seems
|
||||||
|
// seems to work for now, but maybe it needs to become configurable.
|
||||||
|
assert!(
|
||||||
|
a.dot(&b) < Scalar::default_epsilon(),
|
||||||
|
"`a` and `b` must be perpendicular to each other"
|
||||||
|
);
|
||||||
|
|
||||||
|
Self { center, a, b }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Construct a `Circle` from a center point and a radius
|
||||||
|
pub fn from_center_and_radius(
|
||||||
|
center: impl Into<Point<D>>,
|
||||||
|
radius: impl Into<Scalar>,
|
||||||
|
) -> Self {
|
||||||
|
let radius = radius.into();
|
||||||
|
|
||||||
|
let mut a = [Scalar::ZERO; D];
|
||||||
|
let mut b = [Scalar::ZERO; D];
|
||||||
|
|
||||||
|
a[0] = radius;
|
||||||
|
b[1] = radius;
|
||||||
|
|
||||||
|
Self::new(center, a, b)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Access the center point of the circle
|
||||||
|
pub fn center(&self) -> Point<D> {
|
||||||
|
self.center
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Access the radius of the circle
|
||||||
|
pub fn radius(&self) -> Scalar {
|
||||||
|
self.a().magnitude()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Access the vector that defines the starting point of the circle
|
||||||
|
///
|
||||||
|
/// The point where this vector points from the circle center, is the zero
|
||||||
|
/// coordinate of the circle's coordinate system. The length of the vector
|
||||||
|
/// defines the circle's radius.
|
||||||
|
///
|
||||||
|
/// Please also refer to [`Self::b`].
|
||||||
|
pub fn a(&self) -> Vector<D> {
|
||||||
|
self.a
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Access the vector that defines the plane of the circle
|
||||||
|
///
|
||||||
|
/// Also defines the direction of the circle's coordinate system. The length
|
||||||
|
/// is equal to the circle's radius, and this vector is perpendicular to
|
||||||
|
/// [`Self::a`].
|
||||||
|
pub fn b(&self) -> Vector<D> {
|
||||||
|
self.b
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a new instance that is reversed
|
||||||
|
#[must_use]
|
||||||
|
pub fn reverse(mut self) -> Self {
|
||||||
|
self.b = -self.b;
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert a `D`-dimensional point to circle coordinates
|
||||||
|
///
|
||||||
|
/// Converts the provided point into circle coordinates between `0.`
|
||||||
|
/// (inclusive) and `PI * 2.` (exclusive).
|
||||||
|
///
|
||||||
|
/// Projects the point onto the circle before computing circle coordinate,
|
||||||
|
/// ignoring the radius. This is done to make this method robust against
|
||||||
|
/// floating point accuracy issues.
|
||||||
|
///
|
||||||
|
/// Callers are advised to be careful about the points they pass, as the
|
||||||
|
/// point not being on the curve, intentional or not, will not result in an
|
||||||
|
/// error.
|
||||||
|
pub fn point_to_circle_coords(
|
||||||
|
&self,
|
||||||
|
point: impl Into<Point<D>>,
|
||||||
|
) -> Point<1> {
|
||||||
|
let vector = (point.into() - self.center).to_uv();
|
||||||
|
let atan = Scalar::atan2(vector.v, vector.u);
|
||||||
|
let coord = if atan >= Scalar::ZERO {
|
||||||
|
atan
|
||||||
|
} else {
|
||||||
|
atan + Scalar::TAU
|
||||||
|
};
|
||||||
|
Point::from([coord])
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert a point in circle coordinates into a `D`-dimensional point
|
||||||
|
pub fn point_from_circle_coords(
|
||||||
|
&self,
|
||||||
|
point: impl Into<Point<1>>,
|
||||||
|
) -> Point<D> {
|
||||||
|
self.center + self.vector_from_circle_coords(point.into().coords)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert a vector in circle coordinates into a `D`-dimensional point
|
||||||
|
pub fn vector_from_circle_coords(
|
||||||
|
&self,
|
||||||
|
vector: impl Into<Vector<1>>,
|
||||||
|
) -> Vector<D> {
|
||||||
|
let angle = vector.into().t;
|
||||||
|
let (sin, cos) = angle.sin_cos();
|
||||||
|
|
||||||
|
self.a * cos + self.b * sin
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculate an AABB for the circle
|
||||||
|
pub fn aabb(&self) -> Aabb<D> {
|
||||||
|
let center_to_min_max = Vector::from_component(self.radius());
|
||||||
|
|
||||||
|
Aabb {
|
||||||
|
min: self.center() - center_to_min_max,
|
||||||
|
max: self.center() + center_to_min_max,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Circle<3> {
|
||||||
|
/// # Transform the circle
|
||||||
|
pub fn transform(&self, transform: &Transform) -> Self {
|
||||||
|
Circle::new(
|
||||||
|
transform.transform_point(&self.center()),
|
||||||
|
transform.transform_vector(&self.a()),
|
||||||
|
transform.transform_vector(&self.b()),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<const D: usize> approx::AbsDiffEq for Circle<D> {
|
||||||
|
type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;
|
||||||
|
|
||||||
|
fn default_epsilon() -> Self::Epsilon {
|
||||||
|
Scalar::default_epsilon()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||||
|
self.center.abs_diff_eq(&other.center, epsilon)
|
||||||
|
&& self.a.abs_diff_eq(&other.a, epsilon)
|
||||||
|
&& self.b.abs_diff_eq(&other.b, epsilon)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl<const D: usize> GenPolyline<D> for Circle<D> {
|
impl<const D: usize> GenPolyline<D> for Circle<D> {
|
||||||
fn origin(&self) -> Point<D> {
|
fn origin(&self) -> Point<D> {
|
||||||
self.center() + self.a()
|
self.center() + self.a()
|
||||||
@ -125,14 +312,42 @@ impl CircleApproxParams {
|
|||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use std::f64::consts::TAU;
|
use std::f64::consts::{FRAC_PI_2, PI, TAU};
|
||||||
|
|
||||||
use fj_math::{Circle, Point, Scalar};
|
use fj_math::{Point, Scalar, Vector};
|
||||||
|
|
||||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
use crate::geometry::{
|
||||||
|
curves::circle::Circle, traits::GenPolyline, CurveBoundary, Tolerance,
|
||||||
|
};
|
||||||
|
|
||||||
use super::CircleApproxParams;
|
use super::CircleApproxParams;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn point_to_circle_coords() {
|
||||||
|
let circle = Circle {
|
||||||
|
center: Point::from([1., 2., 3.]),
|
||||||
|
a: Vector::from([1., 0., 0.]),
|
||||||
|
b: Vector::from([0., 1., 0.]),
|
||||||
|
};
|
||||||
|
|
||||||
|
assert_eq!(
|
||||||
|
circle.point_to_circle_coords([2., 2., 3.]),
|
||||||
|
Point::from([0.]),
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
circle.point_to_circle_coords([1., 3., 3.]),
|
||||||
|
Point::from([FRAC_PI_2]),
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
circle.point_to_circle_coords([0., 2., 3.]),
|
||||||
|
Point::from([PI]),
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
circle.point_to_circle_coords([1., 1., 3.]),
|
||||||
|
Point::from([FRAC_PI_2 * 3.]),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn increment_for_circle() {
|
fn increment_for_circle() {
|
||||||
test_increment(1., 0.5, 3.);
|
test_increment(1., 0.5, 3.);
|
||||||
|
@ -2,7 +2,9 @@
|
|||||||
//!
|
//!
|
||||||
//! See [`Path`].
|
//! See [`Path`].
|
||||||
|
|
||||||
use fj_math::{Circle, Line, Point, Scalar, Transform, Vector};
|
use fj_math::{Line, Point, Scalar, Transform, Vector};
|
||||||
|
|
||||||
|
use super::curves::circle::Circle;
|
||||||
|
|
||||||
/// A path through surface (2D) or global (3D) space
|
/// A path through surface (2D) or global (3D) space
|
||||||
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
use fj_math::{Circle, Line, Vector};
|
use fj_math::{Line, Vector};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
geometry::{Path, SurfaceGeom},
|
geometry::{curves::circle::Circle, Path, SurfaceGeom},
|
||||||
operations::build::BuildSurface,
|
operations::build::BuildSurface,
|
||||||
storage::Handle,
|
storage::Handle,
|
||||||
topology::Surface,
|
topology::Surface,
|
||||||
|
@ -1,224 +0,0 @@
|
|||||||
use approx::AbsDiffEq;
|
|
||||||
|
|
||||||
use crate::{Aabb, Point, Scalar, Transform, Vector};
|
|
||||||
|
|
||||||
/// An n-dimensional circle
|
|
||||||
///
|
|
||||||
/// The dimensionality of the circle is defined by the const generic `D`
|
|
||||||
/// parameter.
|
|
||||||
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
|
||||||
pub struct Circle<const D: usize> {
|
|
||||||
center: Point<D>,
|
|
||||||
a: Vector<D>,
|
|
||||||
b: Vector<D>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<const D: usize> Circle<D> {
|
|
||||||
/// Construct a circle
|
|
||||||
///
|
|
||||||
/// # Panics
|
|
||||||
///
|
|
||||||
/// Panics, if any of the following requirements are not met:
|
|
||||||
///
|
|
||||||
/// - The circle radius (defined by the length of `a` and `b`) must not be
|
|
||||||
/// zero.
|
|
||||||
/// - `a` and `b` must be of equal length.
|
|
||||||
/// - `a` and `b` must be perpendicular to each other.
|
|
||||||
pub fn new(
|
|
||||||
center: impl Into<Point<D>>,
|
|
||||||
a: impl Into<Vector<D>>,
|
|
||||||
b: impl Into<Vector<D>>,
|
|
||||||
) -> Self {
|
|
||||||
let center = center.into();
|
|
||||||
let a = a.into();
|
|
||||||
let b = b.into();
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
a.magnitude(),
|
|
||||||
b.magnitude(),
|
|
||||||
"`a` and `b` must be of equal length"
|
|
||||||
);
|
|
||||||
assert_ne!(
|
|
||||||
a.magnitude(),
|
|
||||||
Scalar::ZERO,
|
|
||||||
"circle radius must not be zero"
|
|
||||||
);
|
|
||||||
// Requiring the vector to be *precisely* perpendicular is not
|
|
||||||
// practical, because of numerical inaccuracy. This epsilon value seems
|
|
||||||
// seems to work for now, but maybe it needs to become configurable.
|
|
||||||
assert!(
|
|
||||||
a.dot(&b) < Scalar::default_epsilon(),
|
|
||||||
"`a` and `b` must be perpendicular to each other"
|
|
||||||
);
|
|
||||||
|
|
||||||
Self { center, a, b }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Construct a `Circle` from a center point and a radius
|
|
||||||
pub fn from_center_and_radius(
|
|
||||||
center: impl Into<Point<D>>,
|
|
||||||
radius: impl Into<Scalar>,
|
|
||||||
) -> Self {
|
|
||||||
let radius = radius.into();
|
|
||||||
|
|
||||||
let mut a = [Scalar::ZERO; D];
|
|
||||||
let mut b = [Scalar::ZERO; D];
|
|
||||||
|
|
||||||
a[0] = radius;
|
|
||||||
b[1] = radius;
|
|
||||||
|
|
||||||
Self::new(center, a, b)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Access the center point of the circle
|
|
||||||
pub fn center(&self) -> Point<D> {
|
|
||||||
self.center
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Access the radius of the circle
|
|
||||||
pub fn radius(&self) -> Scalar {
|
|
||||||
self.a().magnitude()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Access the vector that defines the starting point of the circle
|
|
||||||
///
|
|
||||||
/// The point where this vector points from the circle center, is the zero
|
|
||||||
/// coordinate of the circle's coordinate system. The length of the vector
|
|
||||||
/// defines the circle's radius.
|
|
||||||
///
|
|
||||||
/// Please also refer to [`Self::b`].
|
|
||||||
pub fn a(&self) -> Vector<D> {
|
|
||||||
self.a
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Access the vector that defines the plane of the circle
|
|
||||||
///
|
|
||||||
/// Also defines the direction of the circle's coordinate system. The length
|
|
||||||
/// is equal to the circle's radius, and this vector is perpendicular to
|
|
||||||
/// [`Self::a`].
|
|
||||||
pub fn b(&self) -> Vector<D> {
|
|
||||||
self.b
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a new instance that is reversed
|
|
||||||
#[must_use]
|
|
||||||
pub fn reverse(mut self) -> Self {
|
|
||||||
self.b = -self.b;
|
|
||||||
self
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convert a `D`-dimensional point to circle coordinates
|
|
||||||
///
|
|
||||||
/// Converts the provided point into circle coordinates between `0.`
|
|
||||||
/// (inclusive) and `PI * 2.` (exclusive).
|
|
||||||
///
|
|
||||||
/// Projects the point onto the circle before computing circle coordinate,
|
|
||||||
/// ignoring the radius. This is done to make this method robust against
|
|
||||||
/// floating point accuracy issues.
|
|
||||||
///
|
|
||||||
/// Callers are advised to be careful about the points they pass, as the
|
|
||||||
/// point not being on the curve, intentional or not, will not result in an
|
|
||||||
/// error.
|
|
||||||
pub fn point_to_circle_coords(
|
|
||||||
&self,
|
|
||||||
point: impl Into<Point<D>>,
|
|
||||||
) -> Point<1> {
|
|
||||||
let vector = (point.into() - self.center).to_uv();
|
|
||||||
let atan = Scalar::atan2(vector.v, vector.u);
|
|
||||||
let coord = if atan >= Scalar::ZERO {
|
|
||||||
atan
|
|
||||||
} else {
|
|
||||||
atan + Scalar::TAU
|
|
||||||
};
|
|
||||||
Point::from([coord])
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convert a point in circle coordinates into a `D`-dimensional point
|
|
||||||
pub fn point_from_circle_coords(
|
|
||||||
&self,
|
|
||||||
point: impl Into<Point<1>>,
|
|
||||||
) -> Point<D> {
|
|
||||||
self.center + self.vector_from_circle_coords(point.into().coords)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convert a vector in circle coordinates into a `D`-dimensional point
|
|
||||||
pub fn vector_from_circle_coords(
|
|
||||||
&self,
|
|
||||||
vector: impl Into<Vector<1>>,
|
|
||||||
) -> Vector<D> {
|
|
||||||
let angle = vector.into().t;
|
|
||||||
let (sin, cos) = angle.sin_cos();
|
|
||||||
|
|
||||||
self.a * cos + self.b * sin
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Calculate an AABB for the circle
|
|
||||||
pub fn aabb(&self) -> Aabb<D> {
|
|
||||||
let center_to_min_max = Vector::from_component(self.radius());
|
|
||||||
|
|
||||||
Aabb {
|
|
||||||
min: self.center() - center_to_min_max,
|
|
||||||
max: self.center() + center_to_min_max,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Circle<3> {
|
|
||||||
/// # Transform the circle
|
|
||||||
pub fn transform(&self, transform: &Transform) -> Self {
|
|
||||||
Circle::new(
|
|
||||||
transform.transform_point(&self.center()),
|
|
||||||
transform.transform_vector(&self.a()),
|
|
||||||
transform.transform_vector(&self.b()),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<const D: usize> approx::AbsDiffEq for Circle<D> {
|
|
||||||
type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;
|
|
||||||
|
|
||||||
fn default_epsilon() -> Self::Epsilon {
|
|
||||||
Scalar::default_epsilon()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
||||||
self.center.abs_diff_eq(&other.center, epsilon)
|
|
||||||
&& self.a.abs_diff_eq(&other.a, epsilon)
|
|
||||||
&& self.b.abs_diff_eq(&other.b, epsilon)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use std::f64::consts::{FRAC_PI_2, PI};
|
|
||||||
|
|
||||||
use crate::{Point, Vector};
|
|
||||||
|
|
||||||
use super::Circle;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn point_to_circle_coords() {
|
|
||||||
let circle = Circle {
|
|
||||||
center: Point::from([1., 2., 3.]),
|
|
||||||
a: Vector::from([1., 0., 0.]),
|
|
||||||
b: Vector::from([0., 1., 0.]),
|
|
||||||
};
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
circle.point_to_circle_coords([2., 2., 3.]),
|
|
||||||
Point::from([0.]),
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
circle.point_to_circle_coords([1., 3., 3.]),
|
|
||||||
Point::from([FRAC_PI_2]),
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
circle.point_to_circle_coords([0., 2., 3.]),
|
|
||||||
Point::from([PI]),
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
circle.point_to_circle_coords([1., 1., 3.]),
|
|
||||||
Point::from([FRAC_PI_2 * 3.]),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
@ -34,7 +34,6 @@
|
|||||||
mod aabb;
|
mod aabb;
|
||||||
mod arc;
|
mod arc;
|
||||||
mod bivector;
|
mod bivector;
|
||||||
mod circle;
|
|
||||||
mod coordinates;
|
mod coordinates;
|
||||||
mod line;
|
mod line;
|
||||||
mod point;
|
mod point;
|
||||||
@ -49,7 +48,6 @@ pub use self::{
|
|||||||
aabb::Aabb,
|
aabb::Aabb,
|
||||||
arc::Arc,
|
arc::Arc,
|
||||||
bivector::Bivector,
|
bivector::Bivector,
|
||||||
circle::Circle,
|
|
||||||
coordinates::{Uv, Xyz, T},
|
coordinates::{Uv, Xyz, T},
|
||||||
line::Line,
|
line::Line,
|
||||||
point::Point,
|
point::Point,
|
||||||
|
Loading…
Reference in New Issue
Block a user