mirror of
https://github.com/hannobraun/Fornjot
synced 2025-05-07 03:18:30 +00:00
Move Circle
into fj_core::geometry
This commit is contained in:
parent
6c45865e24
commit
64f290010b
@ -1,6 +1,8 @@
|
||||
use fj_math::{Circle, Point};
|
||||
use fj_math::Point;
|
||||
|
||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
||||
use crate::geometry::{
|
||||
curves::circle::Circle, traits::GenPolyline, CurveBoundary, Tolerance,
|
||||
};
|
||||
|
||||
/// # Approximate a circle
|
||||
///
|
||||
|
@ -1,9 +1,12 @@
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use fj_math::{Circle, Line, Point};
|
||||
use fj_math::{Line, Point};
|
||||
|
||||
use crate::{
|
||||
geometry::{CurveBoundary, Geometry, Path, SurfaceGeom, Tolerance},
|
||||
geometry::{
|
||||
curves::circle::Circle, CurveBoundary, Geometry, Path, SurfaceGeom,
|
||||
Tolerance,
|
||||
},
|
||||
storage::Handle,
|
||||
topology::{Curve, Surface},
|
||||
};
|
||||
@ -190,14 +193,14 @@ impl CurveApproxCache {
|
||||
mod tests {
|
||||
use std::f64::consts::TAU;
|
||||
|
||||
use fj_math::{Circle, Point, Vector};
|
||||
use fj_math::{Point, Vector};
|
||||
use pretty_assertions::assert_eq;
|
||||
|
||||
use crate::{
|
||||
algorithms::approx::{
|
||||
circle::approx_circle, curve::approx_curve, ApproxPoint,
|
||||
},
|
||||
geometry::{CurveBoundary, Path, SurfaceGeom},
|
||||
geometry::{curves::circle::Circle, CurveBoundary, Path, SurfaceGeom},
|
||||
operations::build::BuildSurface,
|
||||
topology::Surface,
|
||||
Core,
|
||||
|
@ -2,10 +2,197 @@
|
||||
|
||||
use std::iter;
|
||||
|
||||
use fj_math::{Circle, Point, Scalar, Sign};
|
||||
use approx::AbsDiffEq;
|
||||
use fj_math::{Aabb, Point, Scalar, Sign, Transform, Vector};
|
||||
|
||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
||||
|
||||
/// An n-dimensional circle
|
||||
///
|
||||
/// The dimensionality of the circle is defined by the const generic `D`
|
||||
/// parameter.
|
||||
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
||||
pub struct Circle<const D: usize> {
|
||||
center: Point<D>,
|
||||
a: Vector<D>,
|
||||
b: Vector<D>,
|
||||
}
|
||||
|
||||
impl<const D: usize> Circle<D> {
|
||||
/// Construct a circle
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics, if any of the following requirements are not met:
|
||||
///
|
||||
/// - The circle radius (defined by the length of `a` and `b`) must not be
|
||||
/// zero.
|
||||
/// - `a` and `b` must be of equal length.
|
||||
/// - `a` and `b` must be perpendicular to each other.
|
||||
pub fn new(
|
||||
center: impl Into<Point<D>>,
|
||||
a: impl Into<Vector<D>>,
|
||||
b: impl Into<Vector<D>>,
|
||||
) -> Self {
|
||||
let center = center.into();
|
||||
let a = a.into();
|
||||
let b = b.into();
|
||||
|
||||
assert_eq!(
|
||||
a.magnitude(),
|
||||
b.magnitude(),
|
||||
"`a` and `b` must be of equal length"
|
||||
);
|
||||
assert_ne!(
|
||||
a.magnitude(),
|
||||
Scalar::ZERO,
|
||||
"circle radius must not be zero"
|
||||
);
|
||||
// Requiring the vector to be *precisely* perpendicular is not
|
||||
// practical, because of numerical inaccuracy. This epsilon value seems
|
||||
// seems to work for now, but maybe it needs to become configurable.
|
||||
assert!(
|
||||
a.dot(&b) < Scalar::default_epsilon(),
|
||||
"`a` and `b` must be perpendicular to each other"
|
||||
);
|
||||
|
||||
Self { center, a, b }
|
||||
}
|
||||
|
||||
/// Construct a `Circle` from a center point and a radius
|
||||
pub fn from_center_and_radius(
|
||||
center: impl Into<Point<D>>,
|
||||
radius: impl Into<Scalar>,
|
||||
) -> Self {
|
||||
let radius = radius.into();
|
||||
|
||||
let mut a = [Scalar::ZERO; D];
|
||||
let mut b = [Scalar::ZERO; D];
|
||||
|
||||
a[0] = radius;
|
||||
b[1] = radius;
|
||||
|
||||
Self::new(center, a, b)
|
||||
}
|
||||
|
||||
/// Access the center point of the circle
|
||||
pub fn center(&self) -> Point<D> {
|
||||
self.center
|
||||
}
|
||||
|
||||
/// Access the radius of the circle
|
||||
pub fn radius(&self) -> Scalar {
|
||||
self.a().magnitude()
|
||||
}
|
||||
|
||||
/// Access the vector that defines the starting point of the circle
|
||||
///
|
||||
/// The point where this vector points from the circle center, is the zero
|
||||
/// coordinate of the circle's coordinate system. The length of the vector
|
||||
/// defines the circle's radius.
|
||||
///
|
||||
/// Please also refer to [`Self::b`].
|
||||
pub fn a(&self) -> Vector<D> {
|
||||
self.a
|
||||
}
|
||||
|
||||
/// Access the vector that defines the plane of the circle
|
||||
///
|
||||
/// Also defines the direction of the circle's coordinate system. The length
|
||||
/// is equal to the circle's radius, and this vector is perpendicular to
|
||||
/// [`Self::a`].
|
||||
pub fn b(&self) -> Vector<D> {
|
||||
self.b
|
||||
}
|
||||
|
||||
/// Create a new instance that is reversed
|
||||
#[must_use]
|
||||
pub fn reverse(mut self) -> Self {
|
||||
self.b = -self.b;
|
||||
self
|
||||
}
|
||||
|
||||
/// Convert a `D`-dimensional point to circle coordinates
|
||||
///
|
||||
/// Converts the provided point into circle coordinates between `0.`
|
||||
/// (inclusive) and `PI * 2.` (exclusive).
|
||||
///
|
||||
/// Projects the point onto the circle before computing circle coordinate,
|
||||
/// ignoring the radius. This is done to make this method robust against
|
||||
/// floating point accuracy issues.
|
||||
///
|
||||
/// Callers are advised to be careful about the points they pass, as the
|
||||
/// point not being on the curve, intentional or not, will not result in an
|
||||
/// error.
|
||||
pub fn point_to_circle_coords(
|
||||
&self,
|
||||
point: impl Into<Point<D>>,
|
||||
) -> Point<1> {
|
||||
let vector = (point.into() - self.center).to_uv();
|
||||
let atan = Scalar::atan2(vector.v, vector.u);
|
||||
let coord = if atan >= Scalar::ZERO {
|
||||
atan
|
||||
} else {
|
||||
atan + Scalar::TAU
|
||||
};
|
||||
Point::from([coord])
|
||||
}
|
||||
|
||||
/// Convert a point in circle coordinates into a `D`-dimensional point
|
||||
pub fn point_from_circle_coords(
|
||||
&self,
|
||||
point: impl Into<Point<1>>,
|
||||
) -> Point<D> {
|
||||
self.center + self.vector_from_circle_coords(point.into().coords)
|
||||
}
|
||||
|
||||
/// Convert a vector in circle coordinates into a `D`-dimensional point
|
||||
pub fn vector_from_circle_coords(
|
||||
&self,
|
||||
vector: impl Into<Vector<1>>,
|
||||
) -> Vector<D> {
|
||||
let angle = vector.into().t;
|
||||
let (sin, cos) = angle.sin_cos();
|
||||
|
||||
self.a * cos + self.b * sin
|
||||
}
|
||||
|
||||
/// Calculate an AABB for the circle
|
||||
pub fn aabb(&self) -> Aabb<D> {
|
||||
let center_to_min_max = Vector::from_component(self.radius());
|
||||
|
||||
Aabb {
|
||||
min: self.center() - center_to_min_max,
|
||||
max: self.center() + center_to_min_max,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Circle<3> {
|
||||
/// # Transform the circle
|
||||
pub fn transform(&self, transform: &Transform) -> Self {
|
||||
Circle::new(
|
||||
transform.transform_point(&self.center()),
|
||||
transform.transform_vector(&self.a()),
|
||||
transform.transform_vector(&self.b()),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const D: usize> approx::AbsDiffEq for Circle<D> {
|
||||
type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;
|
||||
|
||||
fn default_epsilon() -> Self::Epsilon {
|
||||
Scalar::default_epsilon()
|
||||
}
|
||||
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.center.abs_diff_eq(&other.center, epsilon)
|
||||
&& self.a.abs_diff_eq(&other.a, epsilon)
|
||||
&& self.b.abs_diff_eq(&other.b, epsilon)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const D: usize> GenPolyline<D> for Circle<D> {
|
||||
fn origin(&self) -> Point<D> {
|
||||
self.center() + self.a()
|
||||
@ -125,14 +312,42 @@ impl CircleApproxParams {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::f64::consts::TAU;
|
||||
use std::f64::consts::{FRAC_PI_2, PI, TAU};
|
||||
|
||||
use fj_math::{Circle, Point, Scalar};
|
||||
use fj_math::{Point, Scalar, Vector};
|
||||
|
||||
use crate::geometry::{traits::GenPolyline, CurveBoundary, Tolerance};
|
||||
use crate::geometry::{
|
||||
curves::circle::Circle, traits::GenPolyline, CurveBoundary, Tolerance,
|
||||
};
|
||||
|
||||
use super::CircleApproxParams;
|
||||
|
||||
#[test]
|
||||
fn point_to_circle_coords() {
|
||||
let circle = Circle {
|
||||
center: Point::from([1., 2., 3.]),
|
||||
a: Vector::from([1., 0., 0.]),
|
||||
b: Vector::from([0., 1., 0.]),
|
||||
};
|
||||
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([2., 2., 3.]),
|
||||
Point::from([0.]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([1., 3., 3.]),
|
||||
Point::from([FRAC_PI_2]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([0., 2., 3.]),
|
||||
Point::from([PI]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([1., 1., 3.]),
|
||||
Point::from([FRAC_PI_2 * 3.]),
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn increment_for_circle() {
|
||||
test_increment(1., 0.5, 3.);
|
||||
|
@ -2,7 +2,9 @@
|
||||
//!
|
||||
//! See [`Path`].
|
||||
|
||||
use fj_math::{Circle, Line, Point, Scalar, Transform, Vector};
|
||||
use fj_math::{Line, Point, Scalar, Transform, Vector};
|
||||
|
||||
use super::curves::circle::Circle;
|
||||
|
||||
/// A path through surface (2D) or global (3D) space
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
||||
|
@ -1,7 +1,7 @@
|
||||
use fj_math::{Circle, Line, Vector};
|
||||
use fj_math::{Line, Vector};
|
||||
|
||||
use crate::{
|
||||
geometry::{Path, SurfaceGeom},
|
||||
geometry::{curves::circle::Circle, Path, SurfaceGeom},
|
||||
operations::build::BuildSurface,
|
||||
storage::Handle,
|
||||
topology::Surface,
|
||||
|
@ -1,224 +0,0 @@
|
||||
use approx::AbsDiffEq;
|
||||
|
||||
use crate::{Aabb, Point, Scalar, Transform, Vector};
|
||||
|
||||
/// An n-dimensional circle
|
||||
///
|
||||
/// The dimensionality of the circle is defined by the const generic `D`
|
||||
/// parameter.
|
||||
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
|
||||
pub struct Circle<const D: usize> {
|
||||
center: Point<D>,
|
||||
a: Vector<D>,
|
||||
b: Vector<D>,
|
||||
}
|
||||
|
||||
impl<const D: usize> Circle<D> {
|
||||
/// Construct a circle
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics, if any of the following requirements are not met:
|
||||
///
|
||||
/// - The circle radius (defined by the length of `a` and `b`) must not be
|
||||
/// zero.
|
||||
/// - `a` and `b` must be of equal length.
|
||||
/// - `a` and `b` must be perpendicular to each other.
|
||||
pub fn new(
|
||||
center: impl Into<Point<D>>,
|
||||
a: impl Into<Vector<D>>,
|
||||
b: impl Into<Vector<D>>,
|
||||
) -> Self {
|
||||
let center = center.into();
|
||||
let a = a.into();
|
||||
let b = b.into();
|
||||
|
||||
assert_eq!(
|
||||
a.magnitude(),
|
||||
b.magnitude(),
|
||||
"`a` and `b` must be of equal length"
|
||||
);
|
||||
assert_ne!(
|
||||
a.magnitude(),
|
||||
Scalar::ZERO,
|
||||
"circle radius must not be zero"
|
||||
);
|
||||
// Requiring the vector to be *precisely* perpendicular is not
|
||||
// practical, because of numerical inaccuracy. This epsilon value seems
|
||||
// seems to work for now, but maybe it needs to become configurable.
|
||||
assert!(
|
||||
a.dot(&b) < Scalar::default_epsilon(),
|
||||
"`a` and `b` must be perpendicular to each other"
|
||||
);
|
||||
|
||||
Self { center, a, b }
|
||||
}
|
||||
|
||||
/// Construct a `Circle` from a center point and a radius
|
||||
pub fn from_center_and_radius(
|
||||
center: impl Into<Point<D>>,
|
||||
radius: impl Into<Scalar>,
|
||||
) -> Self {
|
||||
let radius = radius.into();
|
||||
|
||||
let mut a = [Scalar::ZERO; D];
|
||||
let mut b = [Scalar::ZERO; D];
|
||||
|
||||
a[0] = radius;
|
||||
b[1] = radius;
|
||||
|
||||
Self::new(center, a, b)
|
||||
}
|
||||
|
||||
/// Access the center point of the circle
|
||||
pub fn center(&self) -> Point<D> {
|
||||
self.center
|
||||
}
|
||||
|
||||
/// Access the radius of the circle
|
||||
pub fn radius(&self) -> Scalar {
|
||||
self.a().magnitude()
|
||||
}
|
||||
|
||||
/// Access the vector that defines the starting point of the circle
|
||||
///
|
||||
/// The point where this vector points from the circle center, is the zero
|
||||
/// coordinate of the circle's coordinate system. The length of the vector
|
||||
/// defines the circle's radius.
|
||||
///
|
||||
/// Please also refer to [`Self::b`].
|
||||
pub fn a(&self) -> Vector<D> {
|
||||
self.a
|
||||
}
|
||||
|
||||
/// Access the vector that defines the plane of the circle
|
||||
///
|
||||
/// Also defines the direction of the circle's coordinate system. The length
|
||||
/// is equal to the circle's radius, and this vector is perpendicular to
|
||||
/// [`Self::a`].
|
||||
pub fn b(&self) -> Vector<D> {
|
||||
self.b
|
||||
}
|
||||
|
||||
/// Create a new instance that is reversed
|
||||
#[must_use]
|
||||
pub fn reverse(mut self) -> Self {
|
||||
self.b = -self.b;
|
||||
self
|
||||
}
|
||||
|
||||
/// Convert a `D`-dimensional point to circle coordinates
|
||||
///
|
||||
/// Converts the provided point into circle coordinates between `0.`
|
||||
/// (inclusive) and `PI * 2.` (exclusive).
|
||||
///
|
||||
/// Projects the point onto the circle before computing circle coordinate,
|
||||
/// ignoring the radius. This is done to make this method robust against
|
||||
/// floating point accuracy issues.
|
||||
///
|
||||
/// Callers are advised to be careful about the points they pass, as the
|
||||
/// point not being on the curve, intentional or not, will not result in an
|
||||
/// error.
|
||||
pub fn point_to_circle_coords(
|
||||
&self,
|
||||
point: impl Into<Point<D>>,
|
||||
) -> Point<1> {
|
||||
let vector = (point.into() - self.center).to_uv();
|
||||
let atan = Scalar::atan2(vector.v, vector.u);
|
||||
let coord = if atan >= Scalar::ZERO {
|
||||
atan
|
||||
} else {
|
||||
atan + Scalar::TAU
|
||||
};
|
||||
Point::from([coord])
|
||||
}
|
||||
|
||||
/// Convert a point in circle coordinates into a `D`-dimensional point
|
||||
pub fn point_from_circle_coords(
|
||||
&self,
|
||||
point: impl Into<Point<1>>,
|
||||
) -> Point<D> {
|
||||
self.center + self.vector_from_circle_coords(point.into().coords)
|
||||
}
|
||||
|
||||
/// Convert a vector in circle coordinates into a `D`-dimensional point
|
||||
pub fn vector_from_circle_coords(
|
||||
&self,
|
||||
vector: impl Into<Vector<1>>,
|
||||
) -> Vector<D> {
|
||||
let angle = vector.into().t;
|
||||
let (sin, cos) = angle.sin_cos();
|
||||
|
||||
self.a * cos + self.b * sin
|
||||
}
|
||||
|
||||
/// Calculate an AABB for the circle
|
||||
pub fn aabb(&self) -> Aabb<D> {
|
||||
let center_to_min_max = Vector::from_component(self.radius());
|
||||
|
||||
Aabb {
|
||||
min: self.center() - center_to_min_max,
|
||||
max: self.center() + center_to_min_max,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Circle<3> {
|
||||
/// # Transform the circle
|
||||
pub fn transform(&self, transform: &Transform) -> Self {
|
||||
Circle::new(
|
||||
transform.transform_point(&self.center()),
|
||||
transform.transform_vector(&self.a()),
|
||||
transform.transform_vector(&self.b()),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const D: usize> approx::AbsDiffEq for Circle<D> {
|
||||
type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;
|
||||
|
||||
fn default_epsilon() -> Self::Epsilon {
|
||||
Scalar::default_epsilon()
|
||||
}
|
||||
|
||||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||||
self.center.abs_diff_eq(&other.center, epsilon)
|
||||
&& self.a.abs_diff_eq(&other.a, epsilon)
|
||||
&& self.b.abs_diff_eq(&other.b, epsilon)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::f64::consts::{FRAC_PI_2, PI};
|
||||
|
||||
use crate::{Point, Vector};
|
||||
|
||||
use super::Circle;
|
||||
|
||||
#[test]
|
||||
fn point_to_circle_coords() {
|
||||
let circle = Circle {
|
||||
center: Point::from([1., 2., 3.]),
|
||||
a: Vector::from([1., 0., 0.]),
|
||||
b: Vector::from([0., 1., 0.]),
|
||||
};
|
||||
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([2., 2., 3.]),
|
||||
Point::from([0.]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([1., 3., 3.]),
|
||||
Point::from([FRAC_PI_2]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([0., 2., 3.]),
|
||||
Point::from([PI]),
|
||||
);
|
||||
assert_eq!(
|
||||
circle.point_to_circle_coords([1., 1., 3.]),
|
||||
Point::from([FRAC_PI_2 * 3.]),
|
||||
);
|
||||
}
|
||||
}
|
@ -34,7 +34,6 @@
|
||||
mod aabb;
|
||||
mod arc;
|
||||
mod bivector;
|
||||
mod circle;
|
||||
mod coordinates;
|
||||
mod line;
|
||||
mod point;
|
||||
@ -49,7 +48,6 @@ pub use self::{
|
||||
aabb::Aabb,
|
||||
arc::Arc,
|
||||
bivector::Bivector,
|
||||
circle::Circle,
|
||||
coordinates::{Uv, Xyz, T},
|
||||
line::Line,
|
||||
point::Point,
|
||||
|
Loading…
Reference in New Issue
Block a user