Merge pull request #1591 from hannobraun/arc

Clean up `Arc`
This commit is contained in:
Hanno Braun 2023-02-15 15:16:40 +01:00 committed by GitHub
commit 04ea2d009c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,23 +1,25 @@
use crate::{Point, Scalar};
use num_traits::Float;
use crate::{Point, Scalar, Vector};
/// Calculated geometry that is useful when dealing with an arc
pub struct Arc {
/// Start point of the arc
pub start: Point<2>,
/// End point of the arc
pub end: Point<2>,
/// Center of the circle the arc is constructed on
pub center: Point<2>,
/// Radius of the circle the arc is constructed on
pub radius: Scalar,
/// Angle of `start` relative to `center`, in radians
///
/// Guaranteed to be less than `end_angle`.
pub start_angle: Scalar,
/// Angle of `end` relative to `center`, in radians
///
/// Guaranteed to be greater than `end_angle`.
pub end_angle: Scalar,
/// True if `start` and `end` were switched to ensure `end_angle` > `start_angle`
pub flipped_construction: bool,
}
@ -27,14 +29,22 @@ impl Arc {
pub fn from_endpoints_and_angle(
p0: impl Into<Point<2>>,
p1: impl Into<Point<2>>,
angle: Scalar,
angle_rad: Scalar,
) -> Self {
use num_traits::Float;
let p0 = p0.into();
let p1 = p1.into();
let (p0, p1) = (p0.into(), p1.into());
// This is an implementation of this solution:
// https://math.stackexchange.com/a/87374
let flipped_construction = angle <= Scalar::ZERO;
let angle_rad = angle.abs();
let distance_between_endpoints = (p1 - p0).magnitude();
let radius = distance_between_endpoints
/ (2. * (angle_rad.abs().into_f64() / 2.).sin());
let distance_center_to_midpoint =
(radius.powi(2) - (distance_between_endpoints.powi(2) / 4.)).sqrt();
let flipped_construction = angle_rad <= Scalar::ZERO;
let angle_rad = angle_rad.abs();
let [p0, p1] = if flipped_construction {
[p1, p0]
@ -47,27 +57,25 @@ impl Arc {
} else {
(Scalar::ONE, Scalar::ZERO)
};
let [[x0, y0], [x1, y1]] = [p0, p1].map(|p| p.coords.components);
// https://math.stackexchange.com/questions/27535/how-to-find-center-of-an-arc-given-start-point-end-point-radius-and-arc-direc
// distance between endpoints
let d = ((x1 - x0).powi(2) + (y1 - y0).powi(2)).sqrt();
// radius
let r = d / (2. * (angle_rad.into_f64() / 2.).sin());
// distance from center to midpoint between endpoints
let h = (r.powi(2) - (d.powi(2) / 4.)).sqrt();
// (u, v) is the unit normal in the direction of p1 - p0
let u = (x1 - x0) / d * uv_factor;
let v = (y1 - y0) / d * uv_factor;
// (cx, cy) is the center of the circle
let cx = ((x0 + x1) / 2.) - h * v;
let cy = ((y0 + y1) / 2.) + h * u;
let start_angle = (y0 - cy).atan2(x0 - cx);
let end_angle = (y1 - cy).atan2(x1 - cx) + end_angle_offset;
let unit_vector_p0_to_p1 =
(p1 - p0) / distance_between_endpoints * uv_factor;
let unit_vector_midpoint_to_center =
Vector::from([-unit_vector_p0_to_p1.v, unit_vector_p0_to_p1.u]);
let center = Point {
coords: (p0.coords + p1.coords) / 2.
+ unit_vector_midpoint_to_center * distance_center_to_midpoint,
};
let start_angle = {
let center_to_start = p0 - center;
center_to_start.v.atan2(center_to_start.u)
};
let end_angle = {
let center_to_end = p1 - center;
center_to_end.v.atan2(center_to_end.u) + end_angle_offset
};
Self {
start: p0,
end: p1,
center: Point::from([cx, cy]),
radius: r,
center,
radius,
start_angle,
end_angle,
flipped_construction,
@ -77,39 +85,11 @@ impl Arc {
#[cfg(test)]
mod tests {
use crate::{Point, Scalar};
use crate::{Point, Scalar, Vector};
use super::Arc;
use approx::AbsDiffEq;
fn check_arc_calculation(center: [f64; 2], radius: f64, a0: f64, a1: f64) {
let angle = a1 - a0;
let p0 = [center[0] + radius * a0.cos(), center[1] + radius * a0.sin()];
let p1 = [center[0] + radius * a1.cos(), center[1] + radius * a1.sin()];
let arc = Arc::from_endpoints_and_angle(p0, p1, Scalar::from(angle));
let epsilon = Scalar::default_epsilon() * 10.;
dbg!(center, arc.center);
dbg!(arc.start_angle);
dbg!(arc.end_angle);
dbg!(arc.flipped_construction);
assert!(arc.center.abs_diff_eq(&Point::from(center), epsilon));
assert!(arc.radius.abs_diff_eq(&Scalar::from(radius), epsilon));
if a0 < a1 {
assert!(!arc.flipped_construction);
assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
} else {
assert!(arc.flipped_construction);
assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
}
}
use approx::{assert_abs_diff_eq, AbsDiffEq};
#[test]
fn arc_construction() {
@ -144,4 +124,57 @@ mod tests {
270_f64.to_radians(),
);
}
fn check_arc_calculation(
center: impl Into<Point<2>>,
radius: f64,
a0: f64,
a1: f64,
) {
let center = center.into();
let angle = a1 - a0;
let p0 = center + Vector::from([a0.cos(), a0.sin()]) * radius;
let p1 = center + Vector::from([a1.cos(), a1.sin()]) * radius;
let arc = Arc::from_endpoints_and_angle(p0, p1, Scalar::from(angle));
let epsilon = Scalar::default_epsilon() * 10.;
dbg!(arc.start_angle);
dbg!(arc.end_angle);
dbg!(arc.flipped_construction);
assert_abs_diff_eq!(arc.center, center, epsilon = epsilon);
assert_abs_diff_eq!(
arc.radius,
Scalar::from(radius),
epsilon = epsilon
);
if a0 < a1 {
assert!(!arc.flipped_construction);
assert_abs_diff_eq!(
arc.start_angle,
Scalar::from(a0),
epsilon = epsilon
);
assert_abs_diff_eq!(
arc.end_angle,
Scalar::from(a1),
epsilon = epsilon
);
} else {
assert!(arc.flipped_construction);
assert_abs_diff_eq!(
arc.end_angle,
Scalar::from(a0),
epsilon = epsilon
);
assert_abs_diff_eq!(
arc.start_angle,
Scalar::from(a1),
epsilon = epsilon
);
}
}
}